Skip to main content
Log in

Search for ribosomal mutants in Podospora anserina: Genetic analysis of mutants resistant to paromomycin

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

It has recently been shown that paromomycin, an antibiotic of the aminoglycoside family, is also active on eukaryotic cytoplasmic ribosomes. In the fungus Podospora anserina, genetic analysis of ten mutants resistant to high doses of paromomycin shows that this resistance is caused by mutations in two different nuclear genes. These mutants display pleiotropic phenotypes (cold sensitivity, mycelium and spore appearance and coloration, cross-resistance to other antibiotics). Double mutants are either lethal or very altered and unstable. Moreover, the cytochrome spectra of these mutants seem to indicate that cytoplasmic protein synthesis is affected. The mutants also display a slight suppressor effect. We can therefore assume that these mutations affect cytoplasmic ribosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belcour, L., and Begel, O. (1977). Mitochondrial genes in Podospora anserina: Recombination and linkage. Mol. Gen. Genet. 15311.

    Google Scholar 

  • Breckenridge, L., and Gorini, L. (1969). The dominance of streptomycin sensitivity reexamined. Proc. Natl. Acad. Sci. 62979.

    Google Scholar 

  • Claisse, M. L., Pere-Auber, G. A., Clavillier, L. P., and Slonimski, P. P. (1970). Methode d'estimation de la concentration des cytochromes dans les cellules entières de levure. Eur. J. Biochem. 30469.

    Google Scholar 

  • Coppin-Raynal, E. (1977). Ribosomal suppressors and antisuppressors in Podospora anserina: Resistance to cycloheximide. J. Bacteriol. 131876.

    Google Scholar 

  • Cox, E. C., White, J. R., and Flaks, J. G. (1964). streptomycin action and the ribosome. Proc. Natl. Acad. Sci. 51703.

    Google Scholar 

  • Crouzet, M., Perrot, M., Nogueira, M., and Begueret, J. (1978). Genetic and biochemical analysis of cycloheximide resistance in the fungus Podospora anserina. Biochem. Genet. 16271.

    Google Scholar 

  • Davey, P. J., Haslam, J. M., and Linnane, A. W. (1970). Biogenesis of mitochondria 12: The effects of aminoglycosides antibiotics on the mitochondrial and cytoplasmic protein-synthesizing systems of Saccharomyces cerevisiae. Arch. Biochem. Biophys. 13654.

    Google Scholar 

  • Davies, J. E. (1964). Studies on the ribosomes of streptomycin-sensitive and resistant strains of Escherichia coli. Proc. Natl. Acad. Sci. 51659.

    Google Scholar 

  • De Wilde, M., Cabezón, T., Herzog, A., and Bollen, A. (1977). Apports de la génétique à la connaissance du ribosome bactérien. Biochimie 59125.

    Google Scholar 

  • Esser, K. (1969). An introduction to Podospora anserina. Neurospora Newslett. 1527.

    Google Scholar 

  • Faye, G. (1977). RNA mitochondriaux chez la levure Saccharomyces cerevisiae. Biol. Cell. 2893.

    Google Scholar 

  • Gorini, L. (1974). Streptomycin and misreading of the genetic code. In M. Nomura, A. Tissières, and P. Lengyel (eds.), Ribosomes Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., p. 791.

    Google Scholar 

  • Grant, P., Sanchez, L., and Jimenez, A. (1974). Cryptopleurine resistance: Genetic locus for a 40 S ribosomal component in Saccharomyces cerevisiae. J. Bacteriol. 1201308.

    Google Scholar 

  • Grant, P., Schindler, D., and Davies, J. (1976). Mapping of trichodermin resistance in Saccharomyces cerevisiae: A genetic locus for a component of the 60 S ribosomal subunit. Genetics 83667.

    Google Scholar 

  • Gupta, R. S., and Siminovitch, L. (1977). The molecular basis of emetine resistance in Chinese hamster ovary cells: Alteration in the 40 S ribosomal subunit. Cell 1061.

    Google Scholar 

  • Haugli, F. B., Dove, W. F., and Jimenez, A. (1972). Genetic and biochemistry of cycloheximide resistance in Physarum polycephalum. Mol. Gen. Genet. 11897.

    Google Scholar 

  • Hsu, K. S. (1963). The genetic basis of actidione resistance in Neurospora crassa. J. Gen. Microbiol. 32341.

    Google Scholar 

  • Huang, M., Biggs, D. R., Clark-Walker, G. D., and Linnane, A. W. (1966). Chloramphenicol inhibition of the formation of particulate mitochondrial enzymes of Saccharomyces cerevisiae. Biochim. Biophys. Acta 114434.

    Google Scholar 

  • Kutzleb, R., Schweyen, R., and Kaudweitz, F. (1973). Extrachromosomal inheritance of paromomycin resistance in yeast: Isolation and characterisation of mutants. Mol. Gen. Genet. 12591.

    Google Scholar 

  • Lando, L., Cousin, M. A., Ojasoo, T., and Raynaud, J.-P. (1976). Paromomycin and dihydrostreptomycin binding to Escherichia coli ribosomes. Eur. J. Biochem. 66597.

    Google Scholar 

  • Momose, H., and Gorini, L. (1971). Genetic analysis of streptomycin dependance in Escherichia coli. Genetics 6719.

    Google Scholar 

  • Osaki, M., Mizushima, S., and Nomura, M. (1969). Identification and functional characterization of the protein controlled by the streptomycin resistant locus in E. coli. Nature 222333.

    Google Scholar 

  • Palmer, E., and Wilhelm, J. (1978). Mistranslation in a eucaryotic organism. Cell. 13329.

    Google Scholar 

  • Palmer, E., Wilhelm, J. M., and Sherman, F. (1979). Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics. Nature 277148.

    Google Scholar 

  • Petska, S. (1971). Inhibitors or ribosome functions. Ann. Rev. Microbiol. 25487.

    Google Scholar 

  • Pestka, S. (1977). Inhibitors of protein synthesis. In Weissbach, E., and Pestka, S. (eds.), Molecular Mechanisms of Protein Biosynthesis, Academic Press, New York, p. 467.

    Google Scholar 

  • Picard, M. (1971). Genetic evidence for a polycistronic unit of transcription in the complex locus “14” in Podospora anserina. I. Genetic and complementation maps. Mol. Gen. Genet. 11195.

    Google Scholar 

  • Picard, M. (1973). Genetic evidence for a polycistronic unit of transcription in the complex locus ‘14’ in Podospora anserina. II. Genetic analysis of informational suppressors. Genet. Res. 211.

    Google Scholar 

  • Picard-Bennoun, M. (1976). Genetic evidence for ribosomal antisuppressors in Podospora anserina. Mol. Gen. Genet. 147299.

    Google Scholar 

  • Picard-Bennoun, M., and Coppin-Raynal, E. (1977). Une fonction ribosomique essentielle: Le contrôle de la fidélité de la traduction. Physiol. Veg. 15481.

    Google Scholar 

  • Rizet, G., and Engelmann, C. (1949). Contribution à l'étude d'un Ascomycète tétrasporé: Podospora anserina. Rev. Cytol. Biol. Veg. 11201.

    Google Scholar 

  • Singh, A., Ursic, D., and Davies, J. (1979). Phenotypic suppression and misreading in Saccharomyces cerevisiae. Nature 277146.

    Google Scholar 

  • Slonimski, P. P., Claisse, M. L., Foucher, M., Jacq, C., Kochko, A., Lamouroux, A., Pajot, P., Perrodin, G., Spyridakis, A., and Wambier-Kluppel, M. L. (1978). Mosaic organization and expression of the mitochondrial DNA region controlling cytochrome c reductase and oxydase. In Horecker, B. L., and Stoppani, A. O. M. (eds.), Biochemistry and Genetics of Yeast Academic Press, New York, San Francisco, London, p. 339.

    Google Scholar 

  • Turner, B. C. (1976). Dominance of the wild type sensitive allele of cyh-1. Neurospora Newslett. 2324.

    Google Scholar 

  • von Jagow, G., and Klingenberg, M. (1972). Close correlation between antimycin titer and cytochrome b T content in mitochondria of chloramphenicol treated Neurospora crassa. FEBS Lett. 24278.

    Google Scholar 

  • Weiss, H., and Ziganke, B. (1977). Partial identification, stoichieometry and site of translation of the subunits of ubiquinone cytochrome c oxydoreductase. In Brandlow, W., Schweyen R. J., Wolf K., and Kaudewitz F. (eds.), Mitochondria 1977, Walter de Gruyter, Berlin, New York, p. 463.

    Google Scholar 

  • Wilhelm, J. M., Jessop, J. J., and Pettitt, S. E. (1978a). Aminoglycoside antibiotics and eukaryotic protein synthesis: Stimulation of errors in the translation of natural messengers in extracts of cultured human cells. Biochemistry 171149.

    Google Scholar 

  • Wilhelm, J. M., Pettitt, S. E., and Jessop, J. J. (1978b). Aminoglycoside antibiotics and eukaryotic protein synthesis: Structure-function relationships in the stimulation of misreading with wheat embryo system. Biochemistry 171143.

    Google Scholar 

  • Wilkie, D., and Lee, B. K. (1965). Genetic analysis of actidione resistance in Saccharomyces cerevisiae. Genet. Res. 6130.

    Google Scholar 

  • Wolf, K., Dujon, B., and Slonimski, P. P. (1973). Mitochondrial genetics. V. Multifactorial mitochondrial crosses involving a mutation conferring paromomycin-resistance in Saccharomyces cerevisiae. Mol Gen. Genet. 12553.

    Google Scholar 

  • Zimmerman, R. A., Rosset, R., and Gorini, L. (1971). Nature of phenotypic masking exhibited by drug-dependent streptomycin A mutants of Escherichia coli. J. Mol. Biol. 57403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a C.N.R.S. Grant (ATP Microbiologie No. 3052) and by a NATO Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dequard, M., Couderc, J.L., Legrain, P. et al. Search for ribosomal mutants in Podospora anserina: Genetic analysis of mutants resistant to paromomycin. Biochem Genet 18, 263–280 (1980). https://doi.org/10.1007/BF00484241

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00484241

Key words

Navigation