Skip to main content
Log in

Genetic structure of the Sardinian population at the D1S80 VNTR locus and population diversity

  • Published:
International Journal of Anthropology

Abstract

We typed the Sardinian population at the D1S80 VNTR locus. Nineteen alleles were detected in a sample of 92 unrelated individuals, allele frequency distribution showing a modal pattern mostly in agreement with other Caucasoid populations. A high degree of heterozygosity (observed value=80.4%) was present. Goodness-of-fit tests demonstrated no departure from Hardy-Weinberg expectations. Data regarding heterozygosity, number of alleles and singletons appeared in accordance with the IAM mutation-drift equilibrium model and showed no evidence of hidden substructuring.

Allele 34 exhibited in Sardinians the highest frequency never observed in Caucasians. Nonetheless, the comparison with other European populations did not disclose Sardinian genetic peculiarity. Indeed, measures of genetic divergence among Europeans demonstrated definitely smaller values at the D1S80 locus in comparison with those calculated over a high number of (pre-DNA) polymorphic loci. High mutation rate and selective neutrality typical of VNTRs could account for the observed moderate genetic divergence. Isolation and genetic drift, on the other hand, may have determined certain deviations in allele frequency distribution, as occurred to allele 34 in the Sardinian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Advances in Forensic Haemogenetics (Eds W Bär, A. Fiori & U Rossi) Springer-Verlag Berlin Heidelberg, 1995, vol. 5, pp. 193–195, 210–213, 505–507, 515–517, 562–564, 572–574.

    Google Scholar 

  • Baechtel, F.S., J.B. Smerick, K.W. Presley & B. Budowle, 1993. Multigenerational amplification of a reference ladder for alleles at locus D1S80. J. Forensic Sci., 38: 1176–1182.

    Google Scholar 

  • Barker, J.S.F., P.D. East & B.S. Weir, 1986. Temporal and microgeographic variation in allozyme frequencies in a natural population ofDrosophila buzzatii. Genetics 112: 577–611.

    Google Scholar 

  • Bowcock, A.M., J.R. Kidd, J.L. Mountain, J.M. Hebert, L. Carotenuto, K.K. Kidd & L.L. Cavalli-Sforza, 1991. Drift, admixture, and selection in human evolution: A study with DNA polymorphisms. Proc. Natl. Acad. Sci. USA 88: 839–843.

    Article  Google Scholar 

  • Budowle, B., R. Chakraborty, A.M. Giusti, A.J. Eisenberg & R.C. Allen, 1991. Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Ann. J. Hum. Genet. 48: 137–144.

    Google Scholar 

  • Castro A., I. Fernández-Fernández, S. Alonso, C. Barbero, A. García-Orad, G. Tamayo & M.M. de Pancorbo, 1995. D1S80 locus typing by micro thermal cycler. Application to genetic identity testing. J. Forensic Sci. 40: 546–550.

    Google Scholar 

  • Cavalli-Sforza, L.L. & A. Piazza, 1993. Human genomic diversity in Europe: a summary of recent research and prospects for the future. Eur. J. Hum. Genet. 1: 3–18.

    Google Scholar 

  • Chakraborty, R. & L. Jin, 1992. Heterozygote deficiency, population substructure and their implications in DNA fingerprinting. Hum. Genet. 88: 267–272.

    Article  Google Scholar 

  • Chakraborty, R., P.E. Smouse & J.V. Neel, 1988. Population amalgamation and genetic variation: observations on artificially agglomerated tribal populations of Central and South America. Am. J. Hum. Genet. 43: 709–725.

    Google Scholar 

  • Chakraborty, R., 1990. Mitochondrial DNA polymorphism reveals hidden heterogeneity within some Asian populations. Am. J. Hum. Genet. 47: 87–94.

    Google Scholar 

  • Contu, L., M. Arras, C. Carcassi, G. La Nasa & M. Mulargia, 1992. HLA structure of the Sardinian population: a haplotype study of 551 families. Tissue Antigens 40: 165–174.

    Article  Google Scholar 

  • Deka, R., S. DeCroo, L. Jin, S.T. McGarvey, F. Rothhammer, R.E. Ferrel & R. Chakraborty, 1994. Population genetics characteristics of the D1S80 locus in seven human populations. Hum. Genet. 94: 252–258.

    Article  Google Scholar 

  • Duncan, G., E. Thomas, J.C. Gallo, L.S. Baird, J. Garrison & R.J. Herrera, 1996. Human phylogenetic relationships according to the D1S80 locus. Genetica 98: 277–287.

    Article  Google Scholar 

  • Ewens, W.J., 1972. The sampling theory of selectively neurral alleles. Theor. Popul. Biol. 3: 87–112.

    Article  Google Scholar 

  • Graziosi et al.: Collaborative study on the polymorphism of the D1S80 locus in the Italian population. Advances in Forensic Haemogenetics (Eds A Carracedo, B Brinkmann & W Bär) Springer-Verlag Berlin Heidelberg, 1996, vol. 6, pp 471–474.

    Google Scholar 

  • Gruppioni, G., F. Facchini, P. Brasili Gualandi & D. Luiselli, 1993. Polymorphism of properdin factor B (Bf) in some Italian populations. Anthrop. Anz. 51: 47–58.

    Google Scholar 

  • Hartl, D.L. Principles of population genetics. Sinauer Associates. Inc. Sunderland. Massachussets, 1980.

    Google Scholar 

  • Jeffreys, A.J., A. MacLeod, K. Tamaki, D.L. Neil, D.G., 1991. Monckton Minisatellite repeat coding as a digital approach to DNA typing. Nature 354: 204–209.

    Article  Google Scholar 

  • Jeffreys, A.J., N.J. Royle, V. Wilson & Z. Wong, 1988. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332: 278–281.

    Article  Google Scholar 

  • Jeffreys, A.J., V. Wilson & S.L. Thein, 1985. Hypervariable “minisatellite” regions in human DNA. Nature 314: 67–73.

    Article  Google Scholar 

  • Kasai, K., Y. Nakamura & R. White, 1990. Amplification of a variable number of tandem repeat (VNTR) locus (pMCT118) by the polymerase chain reaction (PCR) and its application to forensic science. J. Forensic Sci. 35: 1196–1200.

    Google Scholar 

  • Kimura, M. & J.F. Crow, 1964. The number of alleles that can be maintained in a finite population. Genetics 49: 725–738.

    Google Scholar 

  • Lewontin, R.C. & D.L. Hartl, 1992. Forensic DNA typing. Science 255: 1054–1055.

    Google Scholar 

  • Morton, N.E., A. Collins & I. Balazs, 1993. Kinship bioassay on hypervariable loci in Blacks and Caucasians. Proc. Natl. Acad. Sci. USA 90: 1892–1896.

    Article  Google Scholar 

  • Nakamura, Y., M. Carlson, V. Krapcho & R. White, 1988. Isolation and mapping of a polymorphic DNA sequence (pMCT118) on chromosome 1p (D1S80). Nucleic Acids Res. 16: 9364.

    Google Scholar 

  • Nakamura, Y., M. Leppert, P. O'Connel, R. Wolff, T. Holm, M. Culver, C. Martin, E. Fujimoto, M. Hoff, E. Kumlin & R. White, 1987. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235: 1616–1622.

    Google Scholar 

  • Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    Google Scholar 

  • Nei, M. Molecular evolutionary genetics, Columbia University Press, New York, 1987.

    Google Scholar 

  • Parham, P., C.E. Lomen, D.A. Lawlor, J.P. Ways, N. Holmes, H.L. Coppin, R.D. Salter, A.M. Wan & P.D. Ennis, 1988. Nature of polymorphism in HLA-A,-B, and-C molecules. Proc. Natl. Acad. Sci. USA 85: 4005–4009.

    Article  Google Scholar 

  • Sajantila, A., B. Budowle, M. Ström, V. Johnsson, M. Lukka, L. Peltonen & C. Ehnholm, 1992. PCR amplification of alleles at the D1S80 locus: comparison of a Finnish and a North American Caucasian population sample, and forensic casework evaluation. Am. J. Hum. Genet. 50: 816–825.

    Google Scholar 

  • Smith, C.A.B., 1953. A simplified heterogeneity test. Ann. Eugen. 16: 16–25.

    Google Scholar 

  • Smith, C.A.B., 1986. Chi-squared tests with small numbers. Ann. Hum. Genet. 50: 163–167.

    Google Scholar 

  • Weber, J.L. & P.E., 1989. May Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388–396.

    Google Scholar 

  • Zouros, E., 1979. Mutation rates, population sizes, and amount of electrophoretic variation of enzyme loci in natural populations. Genetics 92: 623–646.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maugeri, A., Chiarelli, I., Di Paolo, E. et al. Genetic structure of the Sardinian population at the D1S80 VNTR locus and population diversity. Int. J. Anthropol. 14, 191–202 (1999). https://doi.org/10.1007/BF02443899

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02443899

Keywords

Navigation