Skip to main content
Log in

Implications of increased carbon dioxide levels for carbon input and turnover in soils

  • Indirect Responses to CO2 Enrichment: Interactions With Soil Organisms and Soil Processes
  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

The complexity of the plant-soil system in its interaction with the changing climate is discussed. It is shown that processes at the level of organic matter inputs into the soil and the fluxes and pools involved in the global cycle are not known in sufficient detail to allow an estimation of the future quantitative shifts. Even the direction in which the level of stored carbon in the soil organic matter pool will develop is not clear. The importance of the nitrogen cycle, which is intimately coupled to the carbon cycle through the turnover of soil organic matter is underlined. In its turn, the mineralisation of soil organic matter takes place at a rate which is highly dependent on the nature of inputs and the availability of mineral nutrients.

Aspects of shifts in temperature, changes in cultivation practices (reduced tillage) and unintended spreading of inputs in chemical N-fertilizers are of great importance at a regional and global scale.

The complexity of the interactions in the process of mineralisation do require further studies to clarify the point whether a substantial and durable additional storage of carbon in soil organic matter is likely, or that shifts in temperature will cause an overriding acceleration of the mineralisation, and trigger a corresponding net release of carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, L. H., Vu, J. C. V., Valle, R. R., Boote, K. J. & Jones, P. H. 1988. Nonstructural carbohydrates and nitrogen of soybean grown under carbon dioxide enrichment. Crop Sci. 28: 84–94.

    Google Scholar 

  • Ayanaba, A. & Jenkinson, D. S. 1990. Decomposition of carbon-14 labeled ryegrass and maize under tropical conditions. Soil Sci. Soc. Am. J. 54: 112–115.

    Google Scholar 

  • Berendse, F. 1990. Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. J. Ecol. 78: 413–427.

    Google Scholar 

  • Bohn, H. L. 1978. On organic soil carbon and CO2. Tellus 30: 472–475.

    Google Scholar 

  • Bonde, T. A. 1991. Size and dynamics of active soil organic matter fraction as influenced by soil management. Linkoping Studies in Arts and Science 63 (PhD Thesis).

  • Box, J. E., Meisner, C. A., Hook, J. E., Kvien, C. S., Karnok, E. J. & Brenerman, T. B. 1992. The effect of water stress on peanut (Arachis hypogaea L.) rooting. Proc. Intern. Root Res. Soc., Vienna 1991. (in press).

  • Brouwer, R. 1983. Functional equilibrium: sense or nonsense? Neth. J. Agric. Sci. 31: 335–348.

    Google Scholar 

  • Buol, S. W., Sanchez, P. A., Weed, S. B. & Kimble, J. M. 1990. Predicted impact of climatic warming on soil properties and use. In: Kimball, B. A., Rosenberg, N. J. & Allen, L. H. Jr., (eds), Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture. pp 71–82. ASA Spec. Pub. nr 53.

  • Burke, I. C., Yonker, C. M., Parton, W. J., Cole, C. V., Flach, K. & Schimel, D. S. 1989. Texture, climate, and cultivation effects on soil organic matter content in US grassland soils. Soil Sci. Soc. Amer. J. 53: 800–805.

    Google Scholar 

  • Chen, W., Coieman, D. C. & Box, J. E. 1991. Measuring root turnover using the minirhizotron technique. Agric. Ecosyst. Environ. 34: 261–267.

    Google Scholar 

  • Couteaux, M. M., Mousseau, M., Celerier, M. L. & Bottner, P. 1991. Atmospheric CO2 increase and litter quality: decomposition of sweet chestnut leaf litter under different animal food web complexity. Oikos 61: 54–64.

    Google Scholar 

  • Duxbury, J. M., Oades, J. M. & Uehara, G. 1989. Dynamics of soil organic matter in tropical soils. University of Hawaii Press, Honolulu, Hawaii.

    Google Scholar 

  • Erisman, J. W., De, Leeuw, F. A. A. M. & Van, Aalst, R. M. 1987. Deposition of the most important acidifying components in the Netherlands in 1980–1986. 57 pp, Rept. nr. 228473001, RIVM, Bilthoven, The Netherlands.

    Google Scholar 

  • Fusseder, A. 1987. The longevity and activity of the primary root of maize. Plant Soil 101: 257–265.

    Google Scholar 

  • Goudriaan, J. 1993. Interaction of ocean and biosphere in their transient responses to increasing atmospheric CO2. In: Rozema, J., Lambers, H., Van de Geijn, S. C. & Cambridge, M. L., (eds), CO2 and Biosphere. Vegetatio: 104/105: 329–337.

  • Goudriaan, J. 1990. Atmospheric CO2, global carbon fluxes and the biosphere. In: Rabbinge, R., Goudriaan, J., Van, Keulen, H., Penning de Vries, F. W. T. & Van, Laar, H. H. (eds) Theoretical Production Ecology: reflections and prospects. pp 17–40. PUDOC Wageningen.

    Google Scholar 

  • Helal, H. M. & Sauerbeck, D. 1991. Short term determination of the actual respiration rate of intact plant roots. In: McMichael, B. L. & Persson, H. (eds), Plant Roots and their Environment. pp 88–92. Elsevier Scient. Publ., Amsterdam.

    Google Scholar 

  • Janssen, B. H. 1984. A simple method for calculating decomposition and accumulation of ‘young’ soil organic matter. Plant and Soil 76: 297–304.

    Google Scholar 

  • Jansson, S. L. 1958. Tracer studies on nitrogen transformations in soil with special attention to mineralisation-immobilisation relationships. Landbrukshoegsk. Ann. 24: 101–313.

    Google Scholar 

  • Jenkinson, D. S., Adams, D. E. & Wild, A. 1991. Model estimates of CO2 emissions from soil in response to global warming. Nature 351: 304–306.

    Google Scholar 

  • Jenkinson, D. S. & Rayner, J. H. 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci. 123: 298–305.

    Google Scholar 

  • Jenny, H. 1980a. Biomass and humus. In: Jenny, H. The Soil Resource: Origin and behavior, Ch.5, pp 113–146. Springer Verlag, New York.

    Google Scholar 

  • Jenny, H. 1980b. The time factor of system genesis. In: Jenny, H. The Soil Resource: Origin and behavior, Ch.9, pp 207–245. Springer Verlag, New York.

    Google Scholar 

  • Keith, H., Oades, J. M. & Martin, J. K. 1986. Input of carbon to soil from wheat plants. Soil Biol. Biochem. 18: 445–449.

    Google Scholar 

  • Kimball, B. 1983. Carbon dioxide and agricultural yield: An assemblage of 430 prior observations. Agron. J. 75: 779–788.

    Google Scholar 

  • Krueger, K. W. & Trappe, J. M. 1967. Food reserves and seasonal growth of Douglas-fir seedlings. Forest Sci. 13: 192–202.

    Google Scholar 

  • Kurz, W. A. & Kimmins, J. P. 1987. The influence of site quality on tree resource allocation to fine roots and its effect on harvestable productivity of coastal Douglas-fir stands. Fac. of Forestry, Univ. British Columbia, Vancouver, Canada, FRDA Report no 034, 103 pp.

    Google Scholar 

  • Lekkerkerk, L. J. A., Van de Geijn, S. C. & Van Veen, J. A. 1990. Effects of elevated atmospheric CO2 levels on the carbon economy of a soil planted with wheat. In: Bouwman, A. F. (ed), Soils and the greenhouse effect. pp 423–429. John Wiley & Sons.

  • Liljeroth, E., Van, Veen, J. A. & Miller, H. J. 1990. Assimilate translocation to the rhizosphere of two wheat lines and subsequent utilization by rhizosphere microorganisms at two soil nitrogen concentrations. Soil Biol. Biochem. 22: 1015–1021.

    Google Scholar 

  • Louwerse, W., Sibma, L. & Van, Kleef, J. 1990. Crop photosynthesis, respiration and dry matter production of maize. Neth. J. Agric. Sci. 38: 95–108.

    Google Scholar 

  • Lynch, J. M. & Panting, L. M. 1980. Cultivation and the soil biomass. Soil Biol. Biochem. 12: 29–33.

    Google Scholar 

  • Mann, L. K. 1986. Changes in soil carbon storage after cultivation. Soil Sci. 142: 279–288.

    Google Scholar 

  • Mauney, J. R., Guinn, G., Fry, K. E. & Hesketh, J. D. 1979. Correlation of photosynthesis carbon dioxide uptake and carbohydrate accumulation in cotton, soybean, sunflower and sorghum. Photosynthetica 13: 260–266.

    Google Scholar 

  • Melillo, J. M., Aber, J. D. & Muratore, J. F. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621–626.

    Google Scholar 

  • Merckx, R., Den, Hartog, A. & Van, Veen, J. A. 1985. Turnover of root-derived material and related microbial biomass formation in soils of different texture. Soil Biol. Biochem. 17: 565–569.

    Google Scholar 

  • Merckx, R., Dijkstra, A., Den, Hartog, A. & Van, Veen, J. A. 1987. Production of root derived material and associated microbial growth in soil at different nutrient levels. Biol. Fert. Soils 5: 126–132.

    Google Scholar 

  • Oades, J. M., Gillman, G. P. & Uehara, G. 1989. Interactions of soil organic matter and variable-charge clays. In: Coleman, D. C., Oades, J. M. & Uehara, G. (eds), Dynamics of soil organic matter in tropical soils. Univ. of Hawaii Press, Honolulu, Hawaii.

    Google Scholar 

  • Oades, J. M. 1989. The retention of organic matter in soils. Biogeochem. 5: 35–70.

    Google Scholar 

  • Olsthoorn, A. F. M. 1991. Fine root biomass of two Douglas-fir stands on sandy soils in the Netherlands. 1. Root biomass in early summer. Neth. J. Agric. Sci. 39: 49–60.

    Google Scholar 

  • Olsthoorn, A. F. M. & Tiktak, A. 1991. Fine root biomass of two Douglas-fir stands on sandy soils in the Netherlands. 2. Periodicity of fine root growth and estimation of below-ground carbon allocation. Neth. J. Agric. Sci. 39: 61–77.

    Google Scholar 

  • Post, W. M. & Mann, L. K. 1990. Changes in soil organic carbon and nitrogen as a result of cultivation. In: Bouwman, A. F. (ed), Soils and the greenhouse effect. pp 401–406. John Wiley & Sons.

  • Rosswall, T. 1983. The nitrogen cycle. In: Bolin, B. & Cook, R. B. (eds), The major biogeochemical cycles and their interactions. SCOPE 21, pp. 46–50, John Wiley & Sons.

  • Santruckova, H. & Straskraba, M. 1991. On the relationship between specific respiration activity and microbial biomass in soils. Soil Biol. Biochem. 23: 525–532.

    Google Scholar 

  • Smucker, A. J. M., Nunez-Barrios, A. & Ritchie, J. 1991. Root dynamics in drying soil environments. Belowgr. Ecology 2: 4–5.

    Google Scholar 

  • Swinnen, J. & Van Veen, J. A. 1992. Unterscheidung von Wurzel- und Microbielles Atmung im Boden durch Exudatmarkierung. Landwirtsch. Forsch. (in press).

  • Taylor, B. R., Parkinson, D. & Parsons, W. F. J. 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70: 97–104.

    Google Scholar 

  • Tilman, D. 1984. Plant dominance along an experimental nutrient gradient. Ecology 65: 1445–1453.

    Google Scholar 

  • Titlyanova, A. A. 1991. Productivity in grasslands of the USSR. In: McMichael, B. L. & Persson, H. (eds), Plant Roots and their Environment. pp 374–380, Elsevier Scient. Publ., Amsterdam.

    Google Scholar 

  • Van der, Linden, A. M. A., Van, Veen, J. A. & Frissel, M. J. 1987. Modelling soil organic matter levels after long-term applications of crop residues, farmyard and green manures. Plant Soil 101: 21–28.

    Google Scholar 

  • Van, Veen, J. A. 1987. The use of simulation models of the turnover of soil organic matter: An intermediate report. Transactions of the XIII Congress of the International Congress of Soil Science (ISSS) Vol. VI: 626–635.

    Google Scholar 

  • Van, Veen, J. A. & Kuikman, P. J. 1990. Soil structural aspects of decomposition of organic matter by microorganisms. Biogeochem. 11: 213–233.

    Google Scholar 

  • Van, Veen, J. A., Liljeroth, E., Lekkerkerk, L. J. A. & Van de, Geijn, S. C. 1991. Carbon fluxes in plant-soil systems at elevated atmospheric CO2 levels. Ecol. Appl. 1: 175–181.

    Google Scholar 

  • Van, Veen, J. A., Merckx, R. & Van de, Geijn, S. C. 1989. Plant- and soil-related controls of the flow of carbon from roots through the soil microbial biomass. Plant Soil 115: 43–52.

    Google Scholar 

  • Vogt, K. A. & Bloomfield, J. 1991. Root turnover and senescence. In: Waisel, Y., Eshel, A. & Kafkafi, U. (eds), Plant Roots: The Hidden Half. pp 287–306. Marcel Dekker, Inc.

  • Vogt, K. A., Vogt, D. J. & Bloomfield, J. 1991. Input of organic matter to the soil by tree roots. In: McMichael, B. L. & Persson, H. (eds), Plant Roots and their Environment. pp 171–190. Elsevier Scient. Publ. Amsterdam.

    Google Scholar 

  • Vorony, R. P., Van, Veen, J. A. & Paul, E. A. 1981. Organic carbon dynamics in grassland soils. 2. Model validation and simulation of the long-term effects of cultivation and rainfall erosion. Can. J. Soil Sci. 61: 211–224.

    Google Scholar 

  • Wood, C. W., Westfall, D. G. & Peterson, G. A. 1991. Soil carbon and nitrogen changes on initiation of no-till cropping systems. Soil Sci. Soc. Amer. J. 55: 470–476.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Geijn, S.C., van Veen, J.A. Implications of increased carbon dioxide levels for carbon input and turnover in soils. Vegetatio 104, 283–292 (1993). https://doi.org/10.1007/BF00048159

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048159

Keywords

Navigation