Skip to main content
Log in

Growth, photosynthesis and transpiration in Psophocarpus tetragonolobus (L.) DC cultivar ‘UPS 99’

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Two methods (whole-plant growth analysis and gas exchange) were used to measure the response of Psophocarpus tetragonolobus (L.) DC cultivar ‘UPS 99’ to the environment. This plant had an optimal temperature for root growth of 25°C, its rate of acetylene reduction (when inoculated with Rhizobium, strain ‘RRIM 56’) was maximal at 30°C and it required an atmospheric temperature of about 35°C for optimal shoot growth. Maximum water-use efficiency was ca. 33 mg CO2·g H2O-1. The rate of photosynthesis reached a plateau at 900 vpm CO2-this condition also gave the lowest rate of transpiration. Under normal conditions, the light compensation point was at 1.7 klx, while that for CO2 was 60 vpm. Photorespiration diminished gross photosynthesis of P. tetragonolobus by forty percent. Water stress (as measured by sensitivity to slightly increased CO2 levels) caused rapid closure of stomata, and the response was ‘remembered’ for up to five days.

Zusammenfassung

Mit Hilfe von zwei Methoden (Wachstumsanalysen ganzer Pflanzen und Gaswechselmessungen) wurde die Reaktion von Psophocarpus tetragonolobus (L.) DC der Sorte ‘UPS 99’ auf Umwelteinflüsse ermittelt. 25°C war die optimale Temperatur für das Wurzelwachstum. Die Acetylenreduktionsrate (die Pflanzen waren geimpft worden mit Rhizobium ‘RRIM 56’) war am höchsten bei 30°C. 35°C waren notwendig für maximales Sproßwachstum. Der günstigste Wasserausnutzungskoeffizient lag bei ungefähr 33 (mg CO2·g H2O-1). Die Photosyntheseraten wurden durch Erhöhung der CO2-Konzentration gesteigert. Bei Konzentrationen über 900 vpm CO2 konnte allerdings keine weitere Steigerung mehr festgestellt werden. Bei 900 vpm CO2 waren die Transpirationsraten am niedrigsten. Unter normalen Bedingungen stellte sich der Lichtkompensationspunkt bei 1,7 klx ein. Der CO2-Kompensationspunkt lag bei 60 vpm CO2. Die Photorespiration verminderte die Photosynthese von P. tetragonolobus um 40%. Wasserstreß vergrößerte die Empfindlichkeit der Stomata gegenüber etwas erhöhten CO2-Konzentrationen (die Stomata schließen). Diese Empfindlichkeit war bis zu 5 Tagen nach der Streßbehandlung noch meßbar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agamuthu P and Broughton WJ (1981) Nutrient cycling within developing oil paim plantations. Agro Ecosystems, in preparation.

  2. Blagrove RJ and Gillespie JM (1978) Variability of the seed globulins of winged bean Psophocarpus tetragonolobus (L.) DC. Aust J Plant Physiol 5: 371–375.

    Google Scholar 

  3. Block FR and Sterzelmeier K (1978) Kontinuierliche Messungen der Blatttransspiration mit Hilfe eines neuen elektronischen Gasfeuchtemeßgerätes. Gartenbauwiss 43:142–144.

    Google Scholar 

  4. Bottino PJ, Maire LE and Goff LM (1979) Tissue culture and organogenesis in the winged bean. Can J Bot 57:1773–1776.

    Google Scholar 

  5. Bourke RM (1975) Evaluation of leguminous cover crops at Keravat New Britain. Papua New Guinea Agric J 1:1–9.

    Google Scholar 

  6. Broughton WJ and Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125:1075–1080.

    Google Scholar 

  7. Daunicht HJ and Lenz F (1973) Das Verhalten von Paprikapflanzen mit unterschiedlichem Fruchtbehang bei Behandlung mit 3 CO2-Konzentrationen. Gartenbauwiss 38:533–546.

    Google Scholar 

  8. Drinkali MJ (1978) False rust disease of the winged bean. Pans 24:160–166.

    Google Scholar 

  9. Elmes RPT (1976) Cross-inoculation relationships of Psophocarpus tetragonolobus and its Rhizobium with other legumes and rhizobia. Papua New Guinea Agric J 27:53–57.

    Google Scholar 

  10. Faizah AW, Broughton WJ and John CK (1980) Rhizobia in tropical legumes. X. Growth in coir-dust-soil compost. Soil Biol Biochem 12:211–218.

    Google Scholar 

  11. Faizah AW, Broughton WJ and John CK (1980) Rhizobia in tropical legumes. XI. Survival in the seed environment. Soil Biol Biochem 12:219–227.

    Google Scholar 

  12. Gillespie JM and Blagrove R (1978) Isolation and composition of the seed globulins of winged bean Psophocarpus tetragonolobus (L.) DC. Aust J Plant Physiol 5:357–369.

    Google Scholar 

  13. Gregory HM, Haq N and Evans PK (1980) Regeneration of plantlets from leaf callus of the winged bean Psophocarpus tetragonolobus (L.) DC. Plant Sci Lett 18:395–400.

    Google Scholar 

  14. Harding J, Marin FW and Kleiman R (1978) Seed protein and oil yields of the winged bean Psophocarpus tetragonolobus in Puerto Rico. Trop Agric 55:307–314.

    Google Scholar 

  15. Hardy RWF and Havelka VC (1975) Nitrogen fixation research: a key to world food. Science 188:633–634.

    Google Scholar 

  16. Hardy RWF, Criswell JG and Havelka VD (1977) Investigations of possible limitations of nitrogen fixation by legumes: (1) methodology, (2) identification and (3) assessment of significance. In Newton W, Postgate JR and Rodriguez-Barrueco C, eds. Recent Developments in Nitrogen Fixation, pp 451–467. Academic Press, London.

    Google Scholar 

  17. Hoagland DR and Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agr Exp Stat Circ 347.

  18. Ikram A and Broughton WJ (1978) Rhizobia in tropical legumes. XIII. Inoculation of Psophocarpus tetragonolobus (L.) DC. In The Winged Bean pp 205–210. Philippine, Council for Agriculture and Resources Research, Los Baños, Laguna, Philippines.

    Google Scholar 

  19. Ikram A and Broughton WJ (1980) Rhizobia in tropical legumes. VII. Effectiveness of different isolates on Psophocarpus tetragonolobus (L.) DC. Soil Biol Biochem 12:77–82.

    Google Scholar 

  20. Ikram A and Broughton WJ (1980) Rhizobia in tropical legumes. VIII. Serological characteristics of Psophocarpus tetragonolobus (L.) DC. isolates. Soil Biol Biochem 12:83–87.

    Google Scholar 

  21. Ikram A and Broughton WJ (1980) Rhizobia in tropical legumes. IX. Pot and field trials with inoculants for Psophocarpus tetragonolobus (L.) DC. Soil Biol Biochem 12:203–209.

    Google Scholar 

  22. Khan TN and Erskine W (1978) The adaption of winged bean (Psophocarpus tetragonolobus (L.) DC. in Papua New Guinea). Aust J Agric Res 29:281–289.

    Google Scholar 

  23. Lenz F (1970) Der Einfluβ von unterschiedlicher Stickstof- und Phosphorernährung und von unterschiedlich starkem Fruchtbehang auf das vegetative and generative Wachstum von ‘Washington Navel’ — Stecklingen. Gartenbauwiss 35:143–173.

    Google Scholar 

  24. Lenz F and Daunicht HJ (1970) Die Photosynthese von Erdbeerpflanzen in Abhängigkeit von Ernährung und Fruchtbehang. Erwerbsobstbau 12:61–62.

    Google Scholar 

  25. Masefield GB (1973) Psophocarpus tetragonolobus. A crop with a future. Field Crop Abstracts 26:157–160.

    Google Scholar 

  26. National Academy of Sciences (1975) ‘The winged bean — A high-protein crop for the tropics’. National Academy of Sciences Washington, 43 pp.

    Google Scholar 

  27. Ng EG and Khor GL (1978) Use of cassava and winged bean flour in bread-making. Pertanika 1:7–16.

    Google Scholar 

  28. Pate JS, Atkins CA, White ST, Rainbird RM and Woo KC (1980) Nitrogen nutrition and xylem transport of nitrogen in ureide-producing grain legumes. Plant Physiol 65:961–965.

    Google Scholar 

  29. Price TB and Munro PE (1978) Fungi associated with collar rot of winged bean in Papua New Guinea. Pans 24:53–56.

    Google Scholar 

  30. Price TB (1978) Pseudocercospora psophocarpi on winged bean in Papua New Guinea, Trans-British Mycol Soc 70:47–55.

    Google Scholar 

  31. Raschke K (1975) Stomatal action. Ann Rev Plant Physiol 26:309–340.

    Google Scholar 

  32. Thompson AE and Haryono SK (1979) Sources of resistance to two important diseases of winged bean, Psophocarpus tetragonolobus (L.) DC. Hort Sci 14:532–533.

    Google Scholar 

  33. Williams WM and Broughton WJ (1979) Measurement of acetylene reduction in various systems. In Soil Microbiology and Plant Nutrition, pp. 289–339. Broughton WJ, John CK, Rajarao JC and Lim B, eds. University of Malaya Press, Kuala Lumpur.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenz, F., Broughton, W.J. Growth, photosynthesis and transpiration in Psophocarpus tetragonolobus (L.) DC cultivar ‘UPS 99’. Photosynth Res 2, 259–268 (1981). https://doi.org/10.1007/BF00056263

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00056263

Key words

Navigation