Skip to main content
Log in

Cultivation, frozen storage, and clonal growth of normal human epidermal keratinocytes in serum-free media

  • Published:
Journal of tissue culture methods

Summary

Methods are described for serum-free culture of human epidermal keratinocytes derived from neonatal foreskin tissue. Cultures are initiated, stored frozen, and returned to active growth, all with bovine pituitary extract as the only undefined supplement. Clonal growth assays are then performed in a biochemically defined medium. The degree of stratification and differentiation in the defined medium (and also with pituitary extract) is controlled by the extracellular calcium ion concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

V. References

  1. Aberer, W.; Stingl, G.; Stingl-Gazze, L. A.; Wolff, K. UV-induced abrogation of the murine Langerhans cell-lymphocyte reaction. (abstract) J. Invest. Dermatol. 76:414; 1981.

    Google Scholar 

  2. Boyce, S. T.; Ham, R. G. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J. Invest. Dermatol. 81 (1) supplement:33S–40S; 1983.

    Google Scholar 

  3. Boyce, S. T.; Ham, R. G. Normal human epidermal keratinocytes. In: Webber, M.; Sekely, L., eds. In vitro models for cancer research, vol. 3. Boca Raton, Fl: CRC Press; 1985. in press.

    Google Scholar 

  4. Coriell, L. L. Preservation, storage, and shipment. Methods Enzymol. 58:29–36; 1979.

    Google Scholar 

  5. Duvic, M.; Goldsmith, L. A. HLA and skin disease. In: Goldsmith, L. A., ed. Biochemistry and physiology of the skin. New York: Oxford University Press; 1983:951–998.

    Google Scholar 

  6. Freeman, A. E.; Igel, H. J.; Herrman, V. J. et al. Growth and characterization of human epithelial cell cultures. In Vitro 12:352–362; 1976.

    Google Scholar 

  7. Gilchest, B. A.; Calhoun, J.; Maciag, T. Attachment and growth of human keratinocytes in a serum-free environment. J. Cell Physiol. 112:197–206; 1982.

    Google Scholar 

  8. Gilchest, B. A.; Nemore, R. E.; Maciag, T. Growth of human keratinocytes on fibronectin-coated plates. Cell Biol. Int. Rep. 4:1009–1016; 1980.

    Google Scholar 

  9. Green, H. Cyclic AMP in relation to proliferation of the epidermal cell: a new view. Cell 15:801–811; 1978.

    Google Scholar 

  10. Hawley-Nelson, P.; Sullivan, J. E.; Kung, M. et al. Optimized conditions for the growth of human epidermal cells in culture. J. Invest. Dermatol. 75:176–182; 1980.

    Google Scholar 

  11. Hennings, H.; Michael, D.; Cheng, C. et al. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19:245–254; 1980.

    Google Scholar 

  12. Huff, J. C.; Norris, D. A.; Cary, M. et al. Study of induction of HLA-DR antigens in human keratinocytes in culture. (abstract) Clin. Res. 32(1):139A; 1984.

    Google Scholar 

  13. Huff, J. C.; Norris, D. A.; Cary, M. G. et al. Induction of HLA-DR antigens in cultured human keratinocytes by stimulated peripheral blood mononuclear cells. (abstract) Clin. Res. 32(2):591A; 1984.

    Google Scholar 

  14. Johnson M.; Roberts, J. Prevalence of dermatological disease among persons 1–74 years of age: United States, Advance Data No. 4, USDHEW; 1977.

  15. LeFeber, W. P.; Norris, D. A.; Ryan, S. R. et al. Ultraviolet light induces binding of antibodies to selected nuclear antigens on cultured human keratinocytes. J. Clin. Invest. 74:1545–1551; 1984.

    Google Scholar 

  16. Liu, S-C.; Karasek, M. A. Isolation and growth of adult human epidermal keratinocytes in culture. J. Invest. Dermatol. 71:157–162; 1978.

    Google Scholar 

  17. Liu, S-C.; Parsons, C. S. Serial cultivation of epidermal keratinocytes from psoriatic plaques. J. Invest. Dermatol. 81:54–61; 1983.

    Google Scholar 

  18. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L. et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    Google Scholar 

  19. McKeehan, W. L.; McKeehan, K. A.; Hammond, S. L. et al. Improved medium for clonal growth of human diploid fibroblasts at low concentrations of serum protein. In Vitro 13:399–416; 1977.

    Google Scholar 

  20. Milo, G. E.; Ackerman, G. A.; Noyes, I. Growth and ultrastructural characterization of proliferating human keratinocytes in vitro without added extrinsic factors. In Vitro 16:20–30; 1980.

    Google Scholar 

  21. Morhenn, V. B.; Benike, C. H.; Cox, A. J. et al. Cultured human epidermal keratinocytes do not synthesize HLA-DR. J. Invest. Dermatol. 78:32–37; 1982.

    Google Scholar 

  22. Peehl D.; Ham, R. G. Growth and differentiation of human keratinocytes without a feeder layer or conditioned medium. In Vitro 16:516–525; 1980.

    Google Scholar 

  23. Peehl D.; Ham, R. G. Clonal growth of human keratinocytes with small amounts of dialyzed serum. In Vitro 16:526–540; 1980.

    Google Scholar 

  24. Prunieras, M.; Regnier, M.; Fougere, S. et al. Keratinocytes synthesize basal-lamina proteins in culture. J. Invest. Dermatol. 81(1):74S–81S; 1983.

    Google Scholar 

  25. Rheinwald, J. G.; Beckett, M. A. Defective terminal differentiation in culture as a consistent and selectable character of malignant human keratinocytes. Cell 22:629–632; 1980.

    Google Scholar 

  26. Rheinwald, J. G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell 6:331–334; 1975.

    Google Scholar 

  27. Norris, D. A.; Ryan, S. B.; Kissinger, R. M. et al. Systematic comparison of antibody-mediated mechanisms of keratinocyte lysis in vitro. J. Immunol. 135(2):1073–1079.

  28. Stingl, G.; Stingl-Gazze, L. A.; Aberer, W. et al. Antigen presentation by murine epidermal Langerhans cells and its alteration by ultraviolet B light. J. Immunol. 127:1707–1713; 1981.

    Google Scholar 

  29. Sun, T-T.; Green, H. Differentiation of the epidermal keratinocyte in culture: Formation of the cornified envelope. Cell 9:511–521; 1976.

    Google Scholar 

  30. Tsao M. C.; Walthall, B. J.; Ham, R. G. Clonal growth of normal human epidermal keratinocytes in a defined medium. J. Cell Physiol. 110:219–229; 1982.

    Google Scholar 

  31. Watt, F.; Green, H. Stratification and terminal differentiation of cultured epidermal cells. Nature 295:434–436; 1982.

    Google Scholar 

  32. Wickner, N.; Kissinger, M.; Norris, D. et al. Immunoprecipitation of HLA-DR antigens from gamma interferon-stimulated cultured human keratinocytes. (abstract) J. Invest. Dermatol. 84(4):326; 1985.

    Google Scholar 

  33. Yuspa, S. H.; Harris, C. C. Altered differentiation of mouse epidermal cells treated with retinyl acetate in vitro. Exp. Cell Res. 86:95–105; 1974.

    Google Scholar 

  34. Yuspa, S. H.; Hawley-Nelson, P.; Kochler, B. et al. A survey of transformation markers in differentiating epidermal cell lines in culture. Cancer Res. 40:4694–4703; 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyce, S.T., Ham, R.G. Cultivation, frozen storage, and clonal growth of normal human epidermal keratinocytes in serum-free media. Journal of Tissue Culture Methods 9, 83–93 (1985). https://doi.org/10.1007/BF01797779

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01797779

Key words

Navigation