Skip to main content
Log in

Hierarchical decomposition of variance with applications in environmental mapping based on satellite images

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

A quadtree-based image segmentation procedure (HQ) is presented to map complex environmental conditions. It applies a hierarchical nested analysis of variance within the framework of multiresolution wavelet approximation. The procedure leads to an optimal solution for determining mapping units based on spatial variability with constraints on the arrangement and shape of the units. Linkages to geostatisiics are pointed out, but the HQ decomposition algorithm does not require any homogeneity criteria. The computer implementation can be parameterized by either the number of required mapping units or the maximum within-unit variance, or it can provide a “spectrum” of significances of nested ANOVA. The detailed mathematical background and methodology is illustrated by a salt-affected grassland mapping study (Hortobágy, Hungary), where heterogeneous environmental characteristics have been sampled and predicted based on remotely sensed images using these principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burgess, T. M., Webster, R., and McBratney, A. B., 1991. Optimal interpolation and isarithmic mapping of soil properties IV: sampling strategy: Jour. Soil Science, v. 32. no. 2, p. 643–659.

    Google Scholar 

  • Cressie, N., 1991, Statistics for spatial data: John Wiley & Sons, New York, 900 p.

    Google Scholar 

  • Csillag, F., 1991, Resolution revisited: Proc. AutoCarto-10. Am. Soc. Photogrammetry and Remote Sensing (Bethesda, Maryland), p. 15–29.

    Google Scholar 

  • Csillag, F., and Kertész, M., 1989, Spatial variability: error in natural resource maps? Agrokémia és Talajtan v. 37, no. 4. p. 715–726.

    Google Scholar 

  • Csillag, F., Kertész, M., and Kummert, á., 1992, Resolution, accuracy and attributes: approaches for environmental geographical information systems: Computers, Environment and Urban Systems, v. 16, no. 4, p. 289–297.

    Google Scholar 

  • Csillag, F., Kertész, M., and Kummert, á., 1995, Sampling and mapping of heterogeneous surfaces: multiresolution tiling adjusted to local variability: Intern. Jour. Geographical Information Systems, in press.

  • Csiszár, I., 1975, I-divergence geometry of probability distributions: Annals Probability, v. 3, no. 2, p. 146–158.

    Google Scholar 

  • Curran, P., 1988, The semivariogram in remote sensing: Remote Sensing of Environment, v. 24, no. 6, p. 493–507.

    Google Scholar 

  • Daubechies, I., 1990. The wavelet, time-frequency localization and signal analysis: IEEE Transactions on Information Theory, v. 36, no. 5. p. 961–1003.

    Google Scholar 

  • Davidson, A., 1995, Predicting salinity status across natural grasslands by integrating field and remotely sensed data in a G1S: unpubl. masters thesis, Univ. Toronto, 121 p.

  • Davidson, A., and Csillag, F., 1994, Integrating remotely sensed and field data in a GIS for mapping salinity status of natural grasslands: Proc. Can. Conf. GIS. Natural Resources Canada (Ottawa), p. 1708–1718.

    Google Scholar 

  • Deutsch, C., and Journel, A., 1993, GSLIB: a geostatistical software library: Oxford Univ. Press, Oxford, 340 p.

    Google Scholar 

  • Englund, E., 1993, Spatial simulations: environmental applications,in Goodchild, M. F., Parks, B. O., Steyaert, L. T., eds., Environmental modeling with GIS: Oxford Univ. Press, Oxford. p. 432–437.

    Google Scholar 

  • Goodchild, M. F., Parks, B. O., and Steyaert, L. T., eds., 1993, Environmental modeling with GIS: Oxford Univ. Press, Oxford, 488 p.

    Google Scholar 

  • Griffith, D. A., and Csillag, F., 1993, Exploring the relationships between semi-variogram and spatial autoregressive models: Papers in Regional Science, v. 72. no. 3, p. 283–295.

    Google Scholar 

  • Gruijter, J. J., and Braak, C. J. F., 1990, Model-free estimation from spatial samples: A reappraisal of classical sampling theory: Math. Geology, v. 22, no. 4, p. 407–415.

    Google Scholar 

  • Heuvelink, G. B. M., 1993, Error propagation in quantitative spatial modelling: Applications in geographical information systems: unpubl. doctoral disseration. Netherlands Geographical Studies 163, Koninklijk Nederlands Aardrijkslundig Genootschap, Utrecht, 151 p.

    Google Scholar 

  • Heuvelink, G. B. M., and Birkens, M. F. P., 1992, Combining soil maps with interpolations from point observations to predict quantitative soil properties: Geoderma, v. 55, no. 1, p. 1–15.

    Google Scholar 

  • Kabos, S., 1993, Spatial statistics: TARKI (Social Science Research Center), Budapest (in Hungarian), 66 p.

    Google Scholar 

  • Kertész, M., Csillag, F., and Kummert. á., 1994, Optimal tiling of heterogeneous images: Intern. Jour. Remote Sensing, in press.

  • Mallat, S. G., 1989, A theory for multiresolution signal decompositions: the wavelet representation: IEEE Trans. Geoscience and Remote Sensing, v. 11, p. 674–693.

    Google Scholar 

  • Mark, D. M., 1986. The use of quadtrees in geographic information systems and spatial data handling: Proc. AutoCarto London. Roy. Inst. Chartered Surveyors (London), p. 517–526.

    Google Scholar 

  • Mark, D. M., and Csillag, F., 1989. The nature of boundaries on “area-class” maps: Cartographica, v. 26, no. 1, p. 65–79.

    Google Scholar 

  • Pratt, W. K., 1991, Digital image processing (2nd ed.): Wiley-Interscience, New York, 698 p.

    Google Scholar 

  • Rajkai, K., Marchand, D., and Oertli, J. J., 1988, Study of the spatial variability of soil properties on alkali soils: Proc. Intern. Symp. Solonetz Soils Soil Science Society (Osijek), p. 150–155.

  • Samet, H., 1990, Applications of spatial data structures: Addison-Wesley, Reading, Massachusetts, 507 p.

    Google Scholar 

  • Scheffé, H., 1959, The analysis of variance: John Wiley & Sons, New York, 477 p.

    Google Scholar 

  • Strobach, P., 1991, Quadtree-structured recursive plane decomposition coding of images: IEEE Trans. Signal Processing, v. 39, p. 1380–1397.

    Google Scholar 

  • Tobler, W., 1988, Resolution, accuracy and all that,in Mounsey, H., and Tomlinson, R. eds., Building databases for global science: Taylor & Francis, London, p. 129–137.

    Google Scholar 

  • Tóth, T., and Rajkai, K., 1994, Soil and plant correlations in a solonetzic grassland: Soil Science, v. 157, no. 3, p. 252–262.

    Google Scholar 

  • Tóth, T., Csillag, F., Michéli, E., and Biehl, L., 1991, Characterization of semivegetated saltaffected soils by means of field remote sensing: Remote Sensing of Environment, v. 37, no. 2, p. 167–180.

    Google Scholar 

  • Troeh, F. R., and Thompson, L. M., 1993, Soils and soil fertility: Oxford Univ. Press, Oxford, 462 p.

    Google Scholar 

  • Voltz, M., and Webster, R., 1990, A comparison of kriging, cubic splines and classification for predicting soil properties from sample information: Jour. Soil Science, v. 41, no. 3, p. 473–490.

    Google Scholar 

  • Webster, R., and Oliver, M., 1990, Statistical methods in soil and land resource survey: Oxford Univ. Press, Oxford, 316 p.

    Google Scholar 

  • Wu, J., and Levin, S. A., 1994, A spatial patch dynamic modeling approach to pattern and process in an annual grassland: Ecological Monographs, v. 64, no. 4, p. 447–464.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csillag, F., Kabos, S. Hierarchical decomposition of variance with applications in environmental mapping based on satellite images. Math Geol 28, 385–405 (1996). https://doi.org/10.1007/BF02083652

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02083652

Key words

Navigation