Skip to main content
Log in

Correlation Relation for the Membrane Transport ParametersLp, σ, and ω

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We derive a formula for the correlation of the three practical transportparameters Lp, σ, and ω appearing in Kedem-Katchalskyequations. It has a form ω = KLp/vs(1-σ), where K = 0.0306 is a universal constant independent ofthe choice of a membrane and a solute. It can be used to calculate the valueof any of these parameters, provided the other two and the molar volume\(\overline {\upsilon _s } \) of the solute are known. The formula couldbe very useful, in particular when measurements of the parameters aredifficult or even impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grygorczyk, Cz.: Measurement of practical phenomenological coefficients of membranes, Zagadnienia Biofizyki Wspòłczesnej 3(1978), 5–19 (in Polish).

    Google Scholar 

  2. Kargol, M.: A more general form of Kedem and Katchalsky’s practical equations, J. Biol. Phys. 22(1996), 15–26.

    Google Scholar 

  3. Kargol, M. and Kargol, A.: On solute convection inmembrane stomata, Kieleckie Studia Fizyczne (WSP Kielce) 2(1989), 51–59 (in Polish).

    Google Scholar 

  4. Katchalsky, A. and Curran, P.F.: Nonequilibrium thermodynamics in biophysics. Cambridge, MA: Harvard University Press, 1965, 113–132.

    Google Scholar 

  5. Kedem, O. and Katchalsky, A.: Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes, Biochim. et Biophys. Acta 27(1958), 229–245.

    Google Scholar 

  6. Levitt, D.G.: A new theory of transport for cell membrane pores, Biochim. et Biophys. Acta 373 (1974), 115–131.

    Google Scholar 

  7. Mason, E.A., Wendt, R.P. and Bresler, E.H.: Similarity relations (dimensional analysis) for membrane transport, J. Membr. Sci. 6(1980), 283–298.

    Google Scholar 

  8. Meyer, R.A., Hills, E.C. and Friedman, M.H.: Tracer permeabilities underestimate transmembrane solute flux under a concentration gradient, J. Membr. Sci. 8(1981), 247–253.

    Google Scholar 

  9. Nobel, P.S.: Introduction to biophysical plant physiology, San Francisco: H.W. Foreman and Co., 1974, 133–157.

    Google Scholar 

  10. Sha’afi, R.I. and Gary-Bobo, C.M.: Water and nonelectrolytes permeability in mammalian red cell membranes, Progress in Biophys. and Molecular Biol. 26(1973), 107–146.

    Google Scholar 

  11. Steudle, E., Oren, R. and Schultze, E.D.: Water transport in maize roots, Plant. Physiol. 84 (1987), 1220–1232.

    Google Scholar 

  12. Wendt, R.P., Mason, E.A. and Bresler, E.H.: Effect of heteroporosity on membrane rejection coefficient, J. Membr. Sci. 8(1981), 69–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kargol, A., Kargol, M. & Przestalski, S. Correlation Relation for the Membrane Transport ParametersLp, σ, and ω. Journal of Biological Physics 23, 233–238 (1997). https://doi.org/10.1023/A:1005013401487

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005013401487

Navigation