Skip to main content
Log in

A novel technique for synthesis of silver nanoparticles by laser-liquid interaction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ultrafine particles of many materials have received much attention over the last few years by researchers because of their unique physical and mechanical properties due to increased surface area to volume ratio. A novel laser–liquid interaction technique has been developed to synthesize silver nanoparticles from inexpensive silver nitrate solution in distilled water. The shape, size distribution, microchemistry and crystal structure of the silver nanoparticles were studied using X-ray diffraction, scanning electron microscopy and electron probe X-ray microanalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. HAYASHI, Phys. Today December (1997) 44.

  2. Idem., J. Vac. Sci. Technol. A5 (1987) 1375.

    Google Scholar 

  3. N. ICHINOSE, Y. OZAKI and S. KASHU, “Superfine particles Technology” (Springer London, 1992).

  4. H. GLEITER, Nano-struct. Mater. 1 (1992) 1.

    Google Scholar 

  5. A. H. HEUER et al., Science 255 (1992) 1098.

    Google Scholar 

  6. Z. X. TANG et al., J. Coll. Interface Sci. 146 (1991) 38.

    Google Scholar 

  7. D. W. HOFFMAN et al., J. Am. Ceram. Soc. 67 (1984) 468.

    Google Scholar 

  8. E. HELLSTERN et al., J. Appl. Phys. 65 (1989) 305.

    Google Scholar 

  9. Y. KAWAMURA et al., Mater. Sci. Eng. 98 (1988) 449.

    Google Scholar 

  10. M. L. MANDICH et al., J. Chem. Phys. 86 (1987) 4245.

    Google Scholar 

  11. F. H. KAATZ et al., J. Mater. Res. 8 (1993) 995.

    Google Scholar 

  12. S. W. LYONS, L. M. WANG and T. T. KODAS, Nano-struct. Mater. 2 (1992) 37.

    Google Scholar 

  13. A. H. CARIM, P. DOHERTY, T. T. KODAS and K. OTT, Mater. Lett. 8 (1989) 335.

    Google Scholar 

  14. W. SYMONS, S. C. DANFORTH, in “Proceedings of the Third International Conference Ceramic on Materials and Components for Engines”, edited by V. J. Tennery (American Ceramics Society, Westervile, OH, 1989) p. 67.

    Google Scholar 

  15. K. E. GONSALVES, P. R. STRUTT, T. D. XIAO and P. G. KLEMENS, J. Mater. Sci. 27 (1992) 3231.

    Google Scholar 

  16. D. SEYFERTH and G. H. WISEMAN, J. Am. Ceram. Soc. 67 (1984) C132.

    Google Scholar 

  17. T. D. XIAO, K. E. GONSALVES, P. R. STRUTT and P. G. KLEMENS, J. Mater. Sci. 28 (1992) 1334.

    Google Scholar 

  18. K. YAHIKOZAWA, K. YASUDA and Y. MATSUDA, Electrochem. Acta 37 (1992) 453.

    Google Scholar 

  19. D. C. DOUGLASS et al., Phys. Rev. Lett. 68 (1992) 1774.

    Google Scholar 

  20. M. G. BAWENDI et al., ibid. 65 (1990) 1623.

    Google Scholar 

  21. H. GLEITTER, Prog. Mater. Sci. 33 (1989) 223.

    Google Scholar 

  22. M. ALPER, MRS Bull. November (1992) 53.

  23. J. H. FENDLER, Chem. Rev. 87 (1987) 877.

    Google Scholar 

  24. S. MANN et al., MRS Bull. October (1992) p. 32.

  25. P. C. EKLUND et al., J. Mater. Res. 8 (1993) 1666.

    Google Scholar 

  26. G. M. CHOW et al., J. Metals November (1993) 2.

  27. JUBIAN P. PARTRIDGE, Mater. Res. Soc. Symp. Proc. 129 (1989) 469.

    Google Scholar 

  28. S. KOMARNENI, J. Mater. Chem. 2 (1992) 1219.

    Google Scholar 

  29. S. KOMARNENI, et al., J. Mater. Res. 8 (1993) 3176.

    Google Scholar 

  30. T. C. PLUM et al., J. Aerosol Sci. 24 (1993) 383.

    Google Scholar 

  31. T. T. KODAS, in “Powder Processing”, edited by F. Y. Wang (Elsevier, Amsterdam).

  32. J. SINGH, J. Metals September (1992) 8.

  33. J. SINGH et al., NASA Technical Report 108431.

  34. J. SINGH and J. MAZUMDER, Acta Metall. 35 (1987) 1995.

    Google Scholar 

  35. Idem., Metall. Trans. 18 (1987) 313.

    Google Scholar 

  36. S. D. ALLEN, J. Appl. Phys. 52 (1981) 6501.

    Google Scholar 

  37. W. B. CHOU et al., J. Appl. Phys. (1988).

  38. J. SINGH et al., ibid. 73 (1993) 4351.

    Google Scholar 

  39. R. SOLANKI et al., Solid State Technol. July (1985) 220.

  40. M. HANABUSA et al., Appl. Phys. Lett. 38 (1984) 385.

    Google Scholar 

  41. G. P. DAVIS et al., J. Appl. Phys. 56 (1984) 1808.

    Google Scholar 

  42. J. SINGH, in “Proceeding of NATO-ASI Conference on Materials and Processing for Surface and Interface Engineering”, edited by Y. Pauleay, Series-E, Vol. 290 (Kluwer Academic, 1994) p. 347.

  43. J. S. HAGGERTY, in “Laser-Induced Chemical Processes”, edited by J. I. Steinfeld (Plenum Press, New York, 1981).

    Google Scholar 

  44. G. W. RICE and R. L. WOODIN, J. Am. Ceram. Soc. 71 (1988) C181.

    Google Scholar 

  45. F. CURCIO et al., Appl. Surface Sci. 46 (1990) 225.

    Google Scholar 

  46. X. X. BI et al., J. Mater. Res. 8 (1993) 1666.

    Google Scholar 

  47. S. M. SHIN et al., Mater. Lett. 3 (1985) 265.

    Google Scholar 

  48. S. T. LIN and A. M. RONN, Chem. Phys. Lett. 56 (1978) 414.

    Google Scholar 

  49. J. SINGH and M. VELLAIKAL, in “Proceeding of the International Conference on Beam Processing of Advanced Materials”, edited by J. Singh and S. Copely (TMS, 1993) p. 383.

  50. F. FIEVET, J. P. LAGIER, B. BIN, B. BEAUDOIN and M. FIGLARZ, Solid State Ionics 32/33 (1989) 198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, R., Denney, P.E., Singh, J. et al. A novel technique for synthesis of silver nanoparticles by laser-liquid interaction. Journal of Materials Science 33, 3471–3477 (1998). https://doi.org/10.1023/A:1013270305004

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013270305004

Keywords

Navigation