Skip to main content
Log in

Conformational preferences of the potent dopamine reuptake blocker BTCP and its analogs and their incorporation into a pharmacophore model

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Molecular mechanics calculations using MM3-92 and ab initio quantum mechanical calculations using SPARTAN 5.0 were performed on the structurally similar PCP and BTCP, in which only the latter has a cocaine-like pharmacological profile as a dopamine reuptake blocker. Calculations were also performed on BTCP analogs with a methyl group in various positions of the cyclohexane ring. The results for the cis-2-methyl compound, which retains good pharmacological activity, allowed us to determine that an aryl-axial conformer is the biologically active form for at least some of the compounds in this series. However, an aryl-equatorial conformer presents the identical pharmacophore, as shown by superposition of the two conformers. X-ray crystallographic structures were also obtained for BTCP and related compounds with a 2-methyl group on the cyclohexane ring, with reasonable agreement between the computational and experimental results. Superposition studies were performed with two rigid analogs of cocaine which illustrate the optimal orientations of the ammonium hydrogen for monoamine transporters. There is excellent agreement between a `back-bridged' cocaine analog that is optimal as a dopamine reuptake blocker and the previously proposed biologically active conformer of methylphenidate. However, BTCP is found to be a better fit to the `front-bridged' cocaine analog that is optimal for a serotonin reuptake blocker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, K.M. and Jones, S.M., Annu. Rev. Pharmacol. Toxicol., 30 (1990) 707.

    Google Scholar 

  2. Vincent, J.P., Kartalovski, B., Geneste, P., Kamenka, J.M. and Lazdunski, M., Proc. Natl. Acad. Sci. USA, 76 (1979) 4678.

    Google Scholar 

  3. Vignon, J., Chicheportiche, R., Chicheportiche, M., Kamenka, J.M., Geneste, P. and Lazdunski, M., Brain Res., 280 (1983) 194.

    Google Scholar 

  4. Vignon, J., Pinet, V., Cerruti, C., Kamenka, J.-M. and Chicheportiche, R., Eur. J. Pharmacol., 148 (1988) 427.

    Google Scholar 

  5. He, X.-S., Raymon, L.P., Mattson, M.V., Eldefrawi, M.E. and de Costa, B.R., J. Med. Chem., 36 (1993) 1188.

    Google Scholar 

  6. Ilagouma, M.T., Duterte-Boucher, D., Coderc, E., Vignon, J., Costentin, J. and Kamenka, J.M., Eur. J. Med. Chem., 28 (1993) 377.

    Google Scholar 

  7. Chaudieu, I., Vignon, J., Chicheportiche, M., Kamenka, J.-M., Trouiller, G. and Chicheportiche, R., Pharmacol. Biochem. Behav., 32 (1989) 699.

    Google Scholar 

  8. Froimowitz, M., J. Comput. Chem., 14 (1993) 934.

    Google Scholar 

  9. Froimowitz, M., Patrick, K.S. and Cody, V., Pharm. Res., 12 (1995) 1430.

    Google Scholar 

  10. Froimowitz, M., Deutsch, H.M., Shi, Q., Wu, K.-M., Glaser, R., Adin, I., George, C. and Schweri, M.M., Bioorg. Med. Chem. Lett., 7 (1997) 1213.

    Google Scholar 

  11. Glaser, R., Adin, I., Shiftan, D., Shi, Q., Deutsch, H.M., George, C., Wu, K.-M. and Froimowitz, M., J. Org. Chem., 63 (1998) 1785.

    Google Scholar 

  12. Froimowitz, M. and George, C., J. Chem. Inf. Comput. Sci., 38 (1998) 506.

    Google Scholar 

  13. Musso, D.L., Mehta, N.B., Soroko, F.E., Ferris, R.M., Hollingworth, E.B. and Kenney, B., Chirality, 5 (1993) 495.

    Google Scholar 

  14. Smith, M.P., George, C. and Kozikowski, A.P., Tetrahedron Lett., 39 (1998) 197.

    Google Scholar 

  15. Smith, M.P., Johnson, K.M., Zhang, M., Flippen-Anderson, J.L. and Kozikowski, A.P., J. Am. Chem. Soc., 120 (1998) 9072.

    Google Scholar 

  16. Abraham, P., Pitner, J.B., Lewin, A.H., Boja, J.W., Kuhar, M.J. and Carroll, F.I., J. Med. Chem., 35 (1992) 141.

    Google Scholar 

  17. Kozikowski, A.P., Saiah, M.K.E., Bergmann, J.S. and Johnson, K.M., J. Med. Chem., 37 (1994) 3440.

    Google Scholar 

  18. Madras, B.K., Pristupa, Z.B., Niznik, H.B., Liang, A.Y., Blundell, P., Gonzalez, M.D. and Meltzer, P.C., Synapse, 24 (1996) 340.

    Google Scholar 

  19. Meltzer, P.C., Liang, A.Y., Blundell, P., Gonzalez, M.D., Chen, Z., George, C. and Madras, B.K., J. Med. Chem., 40 (1997) 2661.

    Google Scholar 

  20. Meltzer, P.C., Blundell, P. and Madras, B.K., Med. Chem. Res., 8 (1998) 12.

    Google Scholar 

  21. Meltzer, P.C., Blundell, P., Chen, Z., Yong, Y.F. and Madras, B.K., Bioorg. Med. Chem. Lett., 9 (1999) 857.

    Google Scholar 

  22. Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University, Bloomington, IN.

  23. Serena Software, Bloomington, IN.

  24. Wavefunction Inc., Irvine, CA.

  25. Sheldrick, G.M., SHELXTL97 Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

    Google Scholar 

  26. Eaton, T.A., Houk, K.N., Watkins, S.F. and Fronczek, F.R., J. Med. Chem., 26 (1983) 479.

    Google Scholar 

  27. Carroll, F.I., Brine, G.A., Boldt, K.G., Mascarella, S.W., Moreland, C.G., Sumner, S.J., Burgess, J.P. and Stejskal, E.O., In Domino, E.F. and Kamenka, J.-M. (Eds.), Sigma and Phencyclidine-like Compounds as Molecular Probes in Biology, NPP Books, Ann Arbor, MI, 1988, pp. 91–106.

    Google Scholar 

  28. Kamenka, J.-M. and Chicheportiche, R., In Domino, E.F. and Kamenka, J.-M. (Eds.), Sigma and Phencyclidine-like Compounds as Molecular Probes in Biology, NPP Books, Ann Arbor, MI, 1988, pp. 1–10.

    Google Scholar 

  29. Manoharan, M., Eliel, E.L. and Carroll, F.I., Tetrahedron Lett., 24 (1983) 1855.

    Google Scholar 

  30. Zenone, F. and Kamenka, J.M., Eur. J. Med. Chem., 26 (1991) 677.

    Google Scholar 

  31. Geneste, P., Kamenka, J.-M., Ung, S.N., Herrmann, P., Goudal, R. and Trouiller, G., Eur. J. Med. Chem., 14 (1979) 301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Froimowitz, M., Wu, KM., Rodrigo, J. et al. Conformational preferences of the potent dopamine reuptake blocker BTCP and its analogs and their incorporation into a pharmacophore model. J Comput Aided Mol Des 14, 135–146 (2000). https://doi.org/10.1023/A:1008144707255

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008144707255

Navigation