Skip to main content
Log in

Muons and muonium in Zn‐spinels

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We have studied the magnetic spinel (Zn)[Fe2]O4 (T_ N\approx10.5\ K) and the non‐magnetic spinels (Zn)[Al2]O4, (Zn)[Ga2]O4, (Zn)[ZnTi]O4 and (Zn)[ZnSn]O4 , both with surface and decay channel muons. In (Zn)[Fe2]O4 the relaxation rate increases monotonically from room temperature down, typical for a paramagnet. Around 30 K, an additional, stronger damped signal appears which is the signature of short‐range ordered (SRO) regions. Their total volume fraction increases drastically towards T_ N (reaching 75%) and astonishingly, continues to be present also below T_ N where the rest of the material has become long‐range ordered. Longitudinal field μSR proves the SRO to be dynamic. In (Zn)[Al2]O4 and (Zn)[Ga2]O4 muon depolarization is caused solely by 27Al or 69,71Ga nuclear dipoles. In the inverse spinel (Zn)[ZnTi]O4, half of the implanted muons depolarize rapidly (\lambda\approx 3μs-1 at room temperature). This, together with repolarization behavior in longitudinal fields indicates that the muon in (Zn)[ZnTi]O4 undergoes a chemical reaction after implantation forming muonium. The fact that no such muonium formation occurred in another inverse spinel ( (Zn)[ZnSn]O4) means that the presence of muonium is not connected to the inverse structure but rather due to the presence of Ti which offers two d‐electrons to participate in the chemical bonding. Additional evidence for d‐electron participation is provided by 67Zn‐Mössbauer data which indicate unusual electron densities at the 67Zn nuclei only in (Zn)[ZnTi]O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.C. Johnston, J. Low Temp. Phys. 25 (1976) 145.

    Article  ADS  Google Scholar 

  2. R.W. McCallum, D.C. Johnston, C.A. Luengo and M.B. Maples, J. Low Temp. Phys. 25 (1976) 177.

    Article  Google Scholar 

  3. R.E. Vandenberghe and E. De Grave, in: Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 3, eds. G.J. Long and F. Grandjean (Plenum Press, New York, 1989).

    Google Scholar 

  4. W. Potzel, G.M. Kalvius, W. Schiessl, H. Karzel, A. Kratzer, M.K. Krause, A. Schneider, I. Halevy, J. Gal, G. Will, M. Hillberg, R. Wäppling, D.W. Mitchell and T.P. Das, Hyp. Int. 97/98 (1996) 373.

    Article  Google Scholar 

  5. W. Schiessl, W. Potzel, H. Karzel, M. Steiner, G.M. Kalvius, A. Martin, M.K. Krause, I. Halevy, J. Gal, W. Schäfer, G. Will, M. Hillberg and R. Wäppling, Phys. Rev. B 53 (1996) 9143.

    Article  ADS  Google Scholar 

  6. C. Hohenemser, N. Rosov and A. Kleinhammes, Hyp. Int. 49 (1989) 267.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burghart, F., Potzel, W., Kalvius, G. et al. Muons and muonium in Zn‐spinels. Hyperfine Interactions 106, 187–192 (1997). https://doi.org/10.1023/A:1012650110142

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012650110142

Keywords

Navigation