Skip to main content
Log in

The role of phytoplankton in the removal of arsenic by sedimentation from surface waters

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The role of phytoplankton in the removal of arsenic (As) by particle adsorption and sedimentation was investigated in Moira Lake, Canada. Sampling water and suspended particles over one year illustrated significant variation in As partitioning between particulate and aqueous phases, but failed to establish a correlation between the partition coefficient, K d, and indicators of phytoplankton biomass. A highly significant inverse logarithmic relationship was noted between K d and the concentration of suspended particles (log K d = 5.1 − 1.4 log SS; p = 0.0001) in an apparent demonstration of the particle concentration effect (O' Connor & Connolly, 1980).

Particle deposition, measured by means of sediment traps, appeared to include a substantial component of resuspended surficial sediment making sediment trap results unreliable for quantifying the removal of substances from the water column. The As concentration of particles from deep traps deployed during late summer and early fall exceeded the As concentrations of suspended particles and surficial sediment, and may indicate that a highly contaminated nepheloid layer acts as a temporary sink for As.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggett, J. & G. A. O'Brien, 1985. Detailed model for the mobility of arsenic in lacustrine sediments based on measurements in Lake Ohakuri. Envir. Sci. Technol. 19: 231–238.

    Google Scholar 

  • Andreae, M. O., 1983. Biotransformation of arsenic in the environment. In W. H. Lederer & R. J. Fensterheim (eds), Arsenic: Industrial, Biomedical, Environmental Perspectives. Van Nostrand Reinhold, New York: 378–391.

    Google Scholar 

  • Azcue, J. M., 1993. Geochemistry of Arsenic in Moira Lake, Ontario. Ph. D. Thesis. University of Waterloo, Waterloo, Canada.

    Google Scholar 

  • Baines, S. B. & M. L. Pace, 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol. Oceanogr. 36: 1078–1090.

    Google Scholar 

  • Baker, J. E. & S. J. Eisenreich, 1985. Chlorinated hydrocarbon cycling in the benthic nepheloid layer of Lake Superior. Envir. Sci. Technol. 19: 854–861.

    Google Scholar 

  • Baker, J. E., S. J. Eisenreich & B. J. Eadie, 1991. Sediment trap fluxes and benthic recycling of organic carbon, polycyclic aromatic hydrocarbons and polychlorobiphenyl congeners in Lake Superior. Envir. Sci. Technol. 25: 500–509.

    Google Scholar 

  • Baudo, R., 1989. Heavy metal pollution and the ecosystem. In O. Ravera (ed.), Ecological Assessment of Environmental Degradation and Recovery. Elsevier, New York.

    Google Scholar 

  • Bloesch, J. & N. M. Burns, 1980. A critical review of sedimentation trap technique. Schweiz. Z. Hydrol. 42: 15–55.

    Google Scholar 

  • Charlton, M. N. & D. R. S. Lean, 1987. Sedimentation, resuspension and oxygen depletion in Lake Erie. J. Great Lakes Res. 13: 709–723.

    Google Scholar 

  • Cornett, R. J. & L. Chant, 1986. Speciation of arsenic and nickel in sediments of Moira Lake. Report No. PE 2466. Energy, Mines and Resources Canada, Ottawa.

    Google Scholar 

  • Diamond, M. L., 1990. Modelling the Fate and Transport of Arsenic and Other Inorganic Chemicals in Lakes. Ph.D. Thesis, University of Toronto, Toronto, Canada.

    Google Scholar 

  • Diamond, M. L., 1995. Application of a mass balance model to assess in-place arsenic pollution. Envir. Sci. Technol. 28: 29–42.

    Google Scholar 

  • Dillon, P. J., R. D. Evans & L. A. Molot, 1990. Retention and resuspension of phosphorus, nitrogen and iron in a Central Ontario lake. Can. J. Fish. aquat. Sci. 47: 1269–1274.

    Google Scholar 

  • DiToro, D. M., 1985. A particle interaction model of reversible organic chemical sorption. Chemosphere 14: 1503–1538.

    Article  Google Scholar 

  • Eadie, B. J. & J. A. Robbins, 1987. The role of particulate matter in the movement of contaminants in the Great Lakes. In R. A. Hites & S. J. Eisenreich (eds), Sources and Fates of Aquatic Contaminants in the Great Lakes. Advances in Chemistry Series 216, American Chemical Society. Washington, D.C: 320–363.

    Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohnstad, 1978. Methods for Physical and Chemical Analysis of Freshwaters. IBP Handbook No. 8. Billing & Son, London.

    Google Scholar 

  • Laird, G. A., D. Scavia & G. L. Fahnenstiel, 1986. Algal organic carbon excretion in Lake Michigan. J. Great Lakes Res. 12: 136–141.

    Google Scholar 

  • LaZerte, B., 1991. Metal transport and retention: The role of dissolved organic carbon. Dorset Research Centre, Ontario Ministry of the Environment, Ontario, Canada.

    Google Scholar 

  • Ministry of the Environment (MOE). Water Quality Data Region 4, Ontario, 1966–1992, unpublished data.

  • Morel, R. M. & R. J. Hudson, 1985. The geobiological cycle of trace elements in aquatic systems: Redfield revisited. In W. Stumm (ed.), Chemical Processes in Lakes. J. Wiley & Sons, New York: 251–281.

    Google Scholar 

  • Mudroch, A. & P. Mudroch, 1992. Geochemical composition of the nepheloid layer in Lake Ontario. J. Great Lakes Res. 18: 132–153.

    Google Scholar 

  • Nalewajko, C., K. Lee & P. Fay, 1980. Significance of algal extracellular products in lakes and in cultures. Microb. Ecol. 6: 199–207.

    Google Scholar 

  • O'Connor, D. J. & J. P. Connolly, 1980. The effect of concentration of absorbing solids on the partition coefficient. Wat. Res. 14: 1517–1523.

    Article  Google Scholar 

  • Oliver, B. G. & M. N. Charlton, 1984. Chlorinated organic contaminants in settling particulates in the Niagara vicinity of Lake Ontario. Envir. Sci. Technol. 18: 903–908.

    Google Scholar 

  • Planas, D. & A. Lamarche, 1983. Lack of effect of arsenic on phytoplankton communities in different nutrient conditions. Can. J. Fish. aquat. Sci. 40: 156–161.

    Google Scholar 

  • Rosa, F., 1985. Sedimentation and sediment resuspension in Lake Ontario. J. Great Lakes Res. 11: 13–25.

    Google Scholar 

  • Saunders, J. G. & H. L. Windom, 1980. Uptake and reduction of arsenic species by marine algae. Estuar. coast. Mar. Sci. 10: 555–567.

    Google Scholar 

  • Sigg, L., 1985. Metal transfer mechanisms in lakes. The role of settling particles. In W. Stumm (ed.), Chemical Processes in Lakes. Wiley and Sons, New York: 283–309.

    Google Scholar 

  • Sigg, L., M. Sturm & D. Kistler, 1987. Vertical transport of heavy metals by settling particles. Limnol. Oceanogr. 3: 112–129.

    Google Scholar 

  • Swackhamer, D. L. & R. S. Skoglund, 1991. The role of phytoplankton in the partitioning of hydrophobic contaminants in water. In R. A. Baker (ed.), Organic Substances and Sediments in Water. Lewis Publ., Chelsea, Michigan. 91–105.

    Google Scholar 

  • Turner, D. R., 1987. Speciation and cycling of arsenic, cadmium, lead and mercury in natural waters. In T. C. Hutchinson & K. M. Meema (eds), Lead, Mercury, Cadmium and Arsenic in the Environment. J. Wiley & Sons, New York: 175–186.

    Google Scholar 

  • Voice, T. C. & W. J. Weber, Jr., 1985. Sorbent concentration effects in liquid/solid partitioning. Envir. Sci. Technol. 19: 789–796.

    Google Scholar 

  • Waslenchuk, D. G., 1978. The budget and geochemistry of arsenic in a continental shelf environment. Mar. Chem. 7: 39–52.

    Article  Google Scholar 

  • Weilenmann, U., C. R. O'Melia & W. Stumm, 1989. Particle transport in lakes. models and measurements. Limnol. Oceanogr. 34: 1–18.

    Google Scholar 

  • Wood, J. M. & H. K. Wang, 1985. Strategies for microbial resistance to heavy metals. In W. Stumm (ed.), Chemical Processes in Lakes. J. Wiley & Sons, New York: 81–98.

    Google Scholar 

  • Zingaro, R. & N. Bottino, 1983. Biochemistry of arsenic. Recent developments. In W. H. Lederer & R. J. Fensterheim (eds), Arsenic. Industrial, Biomedical, Environmental Perspectives. Van Nostrand Reinhold, New York: 328–347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faye, M.S., Diamond, M.L. The role of phytoplankton in the removal of arsenic by sedimentation from surface waters. Hydrobiologia 324, 117–123 (1996). https://doi.org/10.1007/BF00018172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018172

Key words

Navigation