Skip to main content
Log in

Plane stress finite element prediction of mixed-mode rubber fracture and experimental verification

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This study demonstrates through experimental validation, that one can predict critical loads of arbitrarily shaped cracked rubber specimens of the mixed-mode type (mode I and II) using a plane stress finite element method and utilizing material constants that characterize the mechanical and fracture properties of SBR (Styrene Butadiene Rubber) material determined from experimental tests on a mode I specimen. Conversely, the finite element method can be used to extract useful critical tearing energy information from complicated, arbitrarily shaped cracked rubber specimens. The predicted critical loads or critical tearing energies for crack growth initiation and final fracture, as well as the crack growth initiation direction are compared to the experimental data with good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Rivlin and A.G. Thomas,Journal of Polymer Science 10 (1953) 291–318.

    Google Scholar 

  2. G.J. Lake and A.G. Thomas,Proceedings, Royal Society, London, A300 (1967) 108–119.

    Google Scholar 

  3. A.G. Thomas,Journal of Polymer Science 31 (1958) 467.

    Google Scholar 

  4. H.W. Greensmith,Journal of Polymer Science 7 (1963) 993–1002.

    Google Scholar 

  5. G.J. Lake and P.B. Lindley,Journal of Applied Polymer Science 9 (1965) 1233–1251.

    Google Scholar 

  6. J.R. Rice,Journal of Applied Mechanics 35 (1968) 379–386.

    Google Scholar 

  7. D.J. Lee and J.A. Donovan,Theoretical and Applied Fracture Mechanics 4 (1985) 137–147.

    Google Scholar 

  8. N.M. Wang,International Journal of Solids and Structures 9 (1973) 1211–1223.

    Google Scholar 

  9. N.M. Wang and J.L. Oh,Fracture 1977 3 (1977) 467–484.

    Google Scholar 

  10. D.J. Lee and J.A. Donovan,International Journal of Fracture 34 (1987) 41–55.

    Google Scholar 

  11. A.E. Green and J.E. Adkins,Large Elastic Deformations and Non-linear Continuum Mechanics, Oxford (1960).

  12. T.K. Hellen in International Conference on -Structural Mechanics in Reactor Technology (Smirt), Berlin (1973) paper 65/3.

  13. D.M. Parks,International Journal of Fracture 10 (1974) 487–501.

    Google Scholar 

  14. D.M. Parks,Computer Methods Applied Mechanics and Engineering (1977) 353–364.

  15. R.B. Haber and H.M. Koh,International Journal for Numerical Methods in Engineering 21 (1985) 301–315.

    Google Scholar 

  16. R.M.V. Pidaparti, T.Y. Yang and W. Soedel,International Journal of Fracture 39 (1989) 255–268.

    Google Scholar 

  17. F. Erdogan and G.C. Sih,Journal of Basic Engineering 50D (1963) 519–525.

    Google Scholar 

  18. G.C. Sib,International Journal of Fracture 10 (1974) 305–321.

    Google Scholar 

  19. L.R.G. Treloar,The Physics of Rubber Elasticity, 3rd ed., Clarendon Press, Oxford (1975) Chapter 11.

    Google Scholar 

  20. C.L. Chow, J. Wang and P.N. Tse,Tire Science and Technology 16, No. 1 (1988) 44–60.

    Google Scholar 

  21. M.A. Hussain, S.L. Pu and J.M. Underwood, inFracture Analysis, ASTM STP 560 (1974) 2–28.

    Google Scholar 

  22. J.A. Begley and J.D. Landes, inFracture Toughness, ASTM STP 514 (1972) 1–20.

    Google Scholar 

  23. R.W. Ogden,Proceedings of Royal Society, London, series A 326 (1972) 565–584.

    Google Scholar 

  24. E. Dragonia and G. Medri,Theoretical and Applied Fracture Mechanics 10 (1988) 79–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pidaparti, R.M.V., Yang, T.Y. & Soedel, W. Plane stress finite element prediction of mixed-mode rubber fracture and experimental verification. Int J Fract 45, 221–241 (1990). https://doi.org/10.1007/BF00693350

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00693350

Keywords

Navigation