Skip to main content
Log in

Mammalian cell retention devices for stirred perfusion bioreactors

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Within the spectrum of current applications for cell culture technologies, efficient large-scale mammalian cell production processes are typically carried out in stirred fed-batch or perfusion bioreactors. The specific aspects of each individual process that can be considered when determining the method of choice are presented. A major challenge for perfusion reactor design and operation is the reliability of the cell retention device. Current retention systems include cross-flow membrane filters, spin-filters, inclined settlers, continuous centrifuges and ultrasonic separators. The relative merits and limitations of these technologies for cell retention and their suitability for large-scale perfusion are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arathoon WR and Birch JR (1986) Large-scale cell culture in biotechnology. Science 232: 1390-1395.

    CAS  Google Scholar 

  • Avgerinos GC, Drapeau D, Socolow JS, Mao J, Hsiao K and Broeze RJ (1990) Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells. Bio/technol 8: 54-58.

    Article  CAS  Google Scholar 

  • Batt BC, Davis RH and Kompala DS (1990) Inclined sedimentation for selective retention of viable hybridomas in a continuous suspension bioreactor. Biotechnol Prog 6: 458-464.

    Article  CAS  Google Scholar 

  • Belfort G (1988) Membrane modules: Comparisons of different configurations using fluid mechanics. J Membr Sci 35: 245-270.

    Article  CAS  Google Scholar 

  • Benes E, Hager F, Bolek W and Gröschl M (1991) Separation of dispersed particles by drifting ultrasonic resonance fields. Ultrason. Int. Conf., Le Touquet, France, Butterworth-Heinemann, 167-170.

  • Bibila TA and Robinson DK (1995) In pursuit of the optimal fed-batch process for monoclonal antibody production. Biotechnol Prog 11: 1-13.

    Article  CAS  Google Scholar 

  • Bodeker BGD, Newcomb R, Yuan P, Braufman A and Kelsey W (1994) Production of recombinant factor VIII from perfusion cultures: I. Large-scale fermentation. In: Spier RE, Griffiths JB and Berthold W (eds.) Animal cell technology: Products of today, prospects for tomorrow, Butterworth-Heinemann, Oxford, pp. 580-583.

    Google Scholar 

  • Bowen WR and Gan Q (1992) Properties of microfiltration membrane: the effects of adsorption and shear on the recovery of an enzyme. Biotechnol Bioeng 40: 491-497.

    Article  CAS  Google Scholar 

  • Davis RH and Acrivos A (1985) Sedimentation of noncolloidal particles at low Reynolds numbers. Ann Rev Fluid Mech 17: 91-118.

    Article  Google Scholar 

  • Davison BH, San K-Y and Stephanopoulos G (1985) Stable competitive coexistence in a continuous fermenter with size selective properties. Biotechnol Prog 1: 260-268.

    Article  CAS  Google Scholar 

  • Dela Brois e D, Noiseux M, Massie B and Lemieux R (1992) Hybridoma perfusion systems: A comparison study. Biotechnol Bioeng 40: 25-32.

    Article  Google Scholar 

  • Deo YM, Mahadevan MD and Fuchs R (1996) Practical considerations in operation and scale up of spin filter based bioreactors for monoclonal antibody production. Biotechnol Prog 12: 57-64.

    Article  CAS  Google Scholar 

  • Doblhoff-Dier O, Gaida T, Katinger H, Burger W, Gröschl M and Benes E (1994) A novel ultrasonic resonance field device for the retention of animal cells. Biotechnol Prog 10: 428-32.

    Article  CAS  Google Scholar 

  • Drew DA, Schonberg JA and Belfort G (1991) Lateral inertial migration of a small sphere in fast laminar flow through a small membrane duct. Chem Eng Sci 46: 3219-3224.

    Article  CAS  Google Scholar 

  • Esclade LRJ, Carrel S and Peringer P (1991) Influence of the screen material on the fouling of spin filters. Biotechnol Bioeng 38: 159-168.

    Article  CAS  Google Scholar 

  • Favre E and Thaler T (1992) An engineering analysis of rotating sieves for hybridoma cell retention in stirred tank bioreactors. Cytotechnol 9: 11-19.

    CAS  Google Scholar 

  • Forstrom RJ, Bartlet K, BlackshearJr, PL and Wood T (1975) Formed elements deposition onto filtering walls. Trans Am Soc Artif Intern Org 21: 602.

    CAS  Google Scholar 

  • Frank A, Bolek W, Groeschl M, Burger W and Benes E (1993) Separation of suspended particles by use of the inclined resonator concept. Proc. Ultrason. Int. Conf., Vienna, Austria, Butterworth-Heinemann, Oxford, 519-522.

  • Frenander U and Jonsson AS (1996) Cell harvesting by cross-flow microfiltration using a shear enhanced module. Biotechnol Bioeng 52: 397-403.

    Article  CAS  Google Scholar 

  • Gaida T, Doblhoff-Dier O, Strutzenberger K, Katinger H, Burger W, Gröschl M, Handl B and Benes E (1996) Selective retention of viable cells in ultrasonic resonance field devices. Biotechnol Prog 12: 73-76.

    Article  CAS  Google Scholar 

  • Glacken MW, Fleischaker RJ and Sinskey AJ (1986) Reduction of waste product excretion via nutrient control: Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol Bioeng 28: 1376-1389.

    Article  CAS  Google Scholar 

  • Gor'kov LP (1962) On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov Phys Dokl 6: 773-775.

    Google Scholar 

  • Henry KL, Davis RH and Taylor AL (1990) Continuous recombinant bacterial fermentations utilizing selective flocculation and recycle. Biotechnol Prog 6: 7-12.

    Article  CAS  Google Scholar 

  • Hiller G, Clark D and Blanch H (1993) Cell retention chemostat studies of hybridoma cells. Analysis of hybridoma growth and metabolism in continuous suspension culture on serum free medium. Biotechnol Bioeng 42: 185-195.

    Article  CAS  Google Scholar 

  • Himmelfarb P, Thayer PS and Martin HE (1969) Spin-filter culture: the propagation of mammalian cells in suspension. Science 164: 555-557.

    CAS  Google Scholar 

  • Hodgson (1991) Centrifugation takes a new turn. Bio/technol 9: 628-629.

    Article  CAS  Google Scholar 

  • Hülscher M, Scheibler U and Onken U (1992) Selective recycle of viable animal cells by coupling of airlift reactor and cell settler. Biotechnol Bioeng 39: 442-446.

    Article  Google Scholar 

  • Ito Y, Suaudeau J and Bowman RL (1975) New flow-through centrifuge without rotating seals applied to plasmapheresis. Science 189: 999-1000.

    CAS  Google Scholar 

  • Jackson LR, Trudel LJ, Fox JG and Lipman NS (1996) Evaluation of hollow-fiber bioreactors as an alternative to murine ascites production for small scale monoclonal antibody production. J Immunol Methods 189: 217-231.

    Article  CAS  Google Scholar 

  • Jäger V (1992) A novel perfusion system for the large-scale cultivation of animal cells based on a continuous flow centrifuge. In: Spier RE, Griffiths JB and MacDonald C (eds.) Animal cell technology: Developments, processes, products, Butterworth-Hienemann, Oxford, pp. 397-402.

    Google Scholar 

  • Johnson M, Lanthier S, Massie B, Lefebvre G and Kamen AA (1996) Use of the Centritech Lab centrifuge for perfusion culture of hybridoma cells in protein free medium. Biotechnol Prog 12: 855-864.

    Article  CAS  Google Scholar 

  • Kadouri A and Spier RE (1997) Some myths and messages concerning the batch and continuous culture of animal cells. Cytotechnol 24: 89-98.

    Article  Google Scholar 

  • Kawahara H, Mitsuda S, Kumazawa E and Takeshita Y (1994) High-density culture of FM-3A cells using a bioreactor with an external tangential filtration device. Cytotechnol 14: 61-66.

    Article  CAS  Google Scholar 

  • Kelly ST and Zydney AL (1997) Protein fouling during micro-filtration: comparative behavior of different model proteins. Biotechnol Bioeng 55: 91-100.

    Article  CAS  Google Scholar 

  • Kilburn DG, Clarke DJ, Coakley WT and Bardsley DW (1989) Enhanced sedimentation of mammalian cells following acoustic aggregation. Biotechnol Bioeng 34: 559-562.

    Article  CAS  Google Scholar 

  • Maiorella B, Dorin G, Carion A and Harano D (1991) Crossflow microfiltration of animal cells. Biotechnol Bioeng 37: 121-126.

    Article  CAS  Google Scholar 

  • Maiorella BL, Winkelhake J, Young J, Moyer B, Bauer R, Hora M, Andya J, Thomson J, Patel T and Parekh R (1993) Effect of culture conditions on IMantibody eistructure,pharmacokinetics and activity. BioTechnol 11: 387-392.

    Article  CAS  Google Scholar 

  • Marino M, Corti A, Ippolito A, Cassani G and Fassina G (1997) Effect of bench-scale culture conditions on murine IgG heterogeneity. Biotechnol Bioeng 54: 17-25.

    Article  CAS  Google Scholar 

  • Martin N, Brennan A, Denome L and Shaevitz J (1989) High productivity in mammalian cell culture. Bio/technol 5: 838-840.

    Article  Google Scholar 

  • Mercille S, Johnson M, Lemieux R and Massie B (1994) Filtration-based perfusion of hybridoma cultures in protein free medium: reduction of membrane fouling by medium supplementation with DNase I. Biotechnology and Bioengineering 43: 833-846.

    Article  CAS  Google Scholar 

  • Mercille S and Massie B (1994) Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells. Biotechnol Bioeng 44: 1140-1154.

    Article  CAS  Google Scholar 

  • Piret JM, Devens DA and Cooney CL (1991) Nutrient and metabolite gradients in mammalian hollow-fiber bioreactors. Can J Chem Eng 69: 421-428.

    Article  CAS  Google Scholar 

  • Pui PWS, Trampler F, Sonderhoff SA, Groeschl M, Kilburn DG and Piret JM (1995) Batch and semicontinuous aggregation and sedimentation of hybridoma cells by acoustic resonance fields. Biotechnol Prog 11: 146-52.

    Article  CAS  Google Scholar 

  • Rebsamen E, Goldinger W, Scheirer W, Merten O-W and Pálfi GE (1987) Use of a dynamic filtration method for separation of animal cells. Develop Biol Standard 66: 273-277.

    CAS  Google Scholar 

  • Reuveny S, Velez D, Miller L and Macmillan JD (1986) Comparison of cell propagation methods for their effect on monoclonal antibody yield in fermenters. J Immunol Meth 86: 61-69.

    Article  CAS  Google Scholar 

  • Roth G, Smith CE, Schoofs GM, Montgomery JLA and Horwitz JI (1997) Using an external vortex flow filtration device for perfusion cell culture. BioPharm October: 30-35.

  • Searles JA, Todd P and Kompala DS (1994) Viable cell recycle with an inclined settler in the perfusion culture of suspended recombinant Chinese hamster ovary cells. Biotechnol Prog 10: 198-206.

    Article  CAS  Google Scholar 

  • Shi Y, Ryu DDY and Park SH (1992) Performance of mammalian cell culture bioreactor with a new impeller design. Biotechnol Bioeng 40: 260-270.

    Article  CAS  Google Scholar 

  • Shitani Y, Kohno Y-I, Sawada H and Kitano K (1991) Comparison of culture methods for human-human hybridomas secreting anti-HBsAg human monoclonal antibodies. Cytotechnol 6: 197-208.

    Article  Google Scholar 

  • Stevens J, Eickel S and Onken U (1994) Lamellar clarifier-a device for animal cell retention in perfusion culture systems. In: Spier RE, Griffiths JB and Berthold W (eds.) Animal cell technology: Products of today, prospects for tomorrow, Butterworth-Heinemann, Oxford, pp. 234-239.

    Google Scholar 

  • Takazawa Y and Tokashiki M (1989) High cell density perfusion culture of mouse-human hybridoma. Appl Microbiol Biotechnol 32: 280-284.

    Article  Google Scholar 

  • Thompson, KJ and Wilson JS (1994) A compact gravitational settling device for cell retention. In: Spier RE, Griffiths JB and Berthold W (eds.) Animal cell technology: Products of today, prospects for tomorrow, Butterworth-Heinemann, Oxford, pp. 227-229.

    Google Scholar 

  • Tokashiki M, Arai T, Hamamoto K and Ishimaru K (1990) High density culture of hybridoma cells using a perfusion culture vessel with an external centrifuge. Cytotechnol 3: 239-244.

    Article  CAS  Google Scholar 

  • Tolbert WR, Feder J and Kimes RC (1981) Large-scale rotating filter perfusion system for high-density growth of mammalian suspension cultures. In Vitro 17: 885-890.

    CAS  Google Scholar 

  • Trampler F, Sonderhoff SA, Pui PW, Kilburn DG and Piret JM (1994) Acoustic cell filter for high density perfusion culture of hybridoma cells. Bio/technol 12: 281-284.

    Article  CAS  Google Scholar 

  • Van Reis R, Leonard LC, Hsu CC and Builder SE (1991) Industrial scale harvest of proteins from mammalian cell culture by tangential flow filtration. Biotechnol Bioeng 38: 413-422.

    Article  CAS  Google Scholar 

  • Varecka R and Scheirer W (1987) Use of a rotating wire cage for retention of animal cells in a perfusion fermenter. Dev Biol Stand 66: 269-272.

    CAS  Google Scholar 

  • Velez D, Miller L and Macmillan JD (1989) Use of tangential flow filtration in perfusion propagation of hybridoma cells for production of monoclonal antibodies. Biotechnol Bioeng 33: 938-940.

    Article  CAS  Google Scholar 

  • Whitworth G, Grundy MA and Coakley WT (1991) Transport and harvesting of suspended particles using modulated ultrasound. Ultrasonics 29: 439-44.

    Article  CAS  Google Scholar 

  • Woodside SM, Bowen BD and Piret JM (1997) Measurement of ultrasonic forces for particle-liquid separations. AIChE J 43: 1727-1736.

    Article  CAS  Google Scholar 

  • Woodside SM, Piret JM, Gröschl M, Benes E and Bowen B (1998), Acoustic force distribution in resonators for ultrasonic particle separation. AIChE J 44: 1976-1986.

    Article  CAS  Google Scholar 

  • Yabannavar VM, Singh V and Connelly NV (1992) Mammalian cell retention in a spinfilter perfusion bioreactor. Biotechnol Bioeng 40: 925-933.

    Article  CAS  Google Scholar 

  • Yabannavar VM, Singh V and Connelly NV (1994) Scaleup of spinfilter perfusion bioreactor for mammalian cell retention. Biotechnol Bioeng 43: 159-164.

    Article  CAS  Google Scholar 

  • Zhang S, Handa-Corrigan A and Spier RE (1993) A comparison of oxygenation methods for high-density perfusion cultures of animal cells. Biotechnol Bioeng 41: 685-692.

    Article  CAS  Google Scholar 

  • Zydney AL and Colton CK (1984) A red cell deformation model for hemolysis in cross flow membrane plasmapheresis. Chem Eng Commun 30: 191-207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Piret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodside, S.M., Bowen, B.D. & Piret, J.M. Mammalian cell retention devices for stirred perfusion bioreactors. Cytotechnology 28, 163–175 (1998). https://doi.org/10.1023/A:1008050202561

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008050202561

Navigation