Skip to main content
Log in

Characterization of electroless Ni-Mo-P/SnO2/Ti electrodes for oxygen evolution in alkaline solution

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Ni-Mo-P alloy electrodes, prepared by electroless plating, were characterized for application to oxygen evolution. The rate constants were estimated for oxygen evolution on electrodes prepared at various Mo-complex concentrations. The surface area and the crystallinity increase with increasing Mo content. The electrochemical characteristics of the electrodes were identified in relation to morphology and the structure of the surface. The results show that the electroless Ni-Mo-P electrode prepared at a Mo-complex concentration of 0.011 m provided the best electrocatalytic activity for oxygen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

Tafel slope (mV dec−1)

b′:

αF/RT (mV−1)

F :

Faraday constant (96 500 C mol−1)

j :

current density (mA cm−2)

k1 :

reaction rate of Reaction 1, (mol−1 cm3 s)

k 1 :

= k1γC OH (mol cm−2 s−1)

k 10 :

rate constant of Reaction 1 at η = 0 (mol cm−2 s−1)

kc1 :

rate constant of Reaction 2 (mol−1 cm3 s−1)

k c1 :

= kc1γC H 2O (mol cm−2 s−1)

kc2 :

rate constant of chemical Reaction 3 (mol−1 cm2 s−1)

k c2 :

= kc2γ2 (mol cm−2 s−1)

kc3 :

rate constant of Reaction 4 (mol−1 cm2 s−1)

Q a :

anodic capacity (mC)

Q c :

cathodic capacity (mC)

R :

gas constant (8.314 J mol−1 K−1)

R ct :

charge transfer resistance (Ω cm2)

R ads :

charge transfer resistance due to adsorption effect (Ω cm2)

C d1 :

double layer capacity (mF cm−2)

C ads :

double layer capacity due to adsorption effect (mF cm−2)

T :

temperature (K)

α:

anodic transfer coefficient

ηO 2 :

oxygen overpotential (mV)

γ:

saturation concentration of surface oxide on nickel (mol cm−2)

References

  1. B. E. Conway, M. A. Sattar and D. Gilroy, Electrochim. Acta 14 (1969) 677.

    Google Scholar 

  2. H. J. Miao and D. L. Piron, J. Appl. Electrochem. 21 (1991) 55.

    Google Scholar 

  3. J. L. Weininger and M. W. Breiter, J. Electrochem. Soc. 111 (1964) 707.

    Google Scholar 

  4. M. H. Miles, G. Kissel, P. W. T. Lu and S. Srinivasan, J. Electrochem. Soc. 123 (1976) 332.

    Google Scholar 

  5. M. H. Miles, J. Electroanal. Chem. 60 (1975) 89.

    Google Scholar 

  6. Y. L. Lo and B. J. Hwang, J.Ch.I.Ch.E, submitted.

  7. G. Vétes and G. Horányi, J. Electroanal. Chem. 52 (1974) 47.

    Google Scholar 

  8. M. Fleischmann, K. Korinek and D. Pletcher, J. Electroanal. Chem. 31 (1971) 39.

    Google Scholar 

  9. P. M. Robertson, J. Electroanal. Chem. 111 (1980) 97.

    Google Scholar 

  10. M. Amjad, D. Pletcher and C. Smith, J. Electrochem. Soc. 124 (1977) 203.

    Google Scholar 

  11. Y. L. Lo and B. J. Hwang, J. Electrochem. Soc. 142 (1995) 445.

    Google Scholar 

  12. G. O. Mallory, Plat. Surf. Finish. 63 (1976) 34.

    Google Scholar 

  13. I. Koiwa, M. Nishikawa, K. Yamada and T. Osaka, Bull. Chem. Soc. Jpn. 59 (1986) 133.

    Google Scholar 

  14. Y. L. Lo and B. J. Hwang, Ind. Eng. Chem. Res. 33 (1994) 56.

    Google Scholar 

  15. A. K. Misra, J. Electrochem. Soc. 133 (1986) 1029.

    Google Scholar 

  16. A. P. Brown, J. Electrochem. Soc. 134 (1987) 1921.

    Google Scholar 

  17. K. Ravi, V. Ramaswamy and T. K. G. Namboodhiri, Mater. Sei. Eng., 169 (1993) 111.

    Google Scholar 

  18. G. O. Mallory and T. R. Horhn, Plat. Surf. Finish. 66 (1979) 40.

    Google Scholar 

  19. I. Kowia, M. Usuda, K. Yamada and T. Osaka, J. Electrochem. Soc. 135 (1988) 718.

    Google Scholar 

  20. T. Osaka, H. Yamazaki, I. Saito and J. Kawaguchi, J. Electrochem. Soc. 136 (1989) 3418.

    Google Scholar 

  21. C. Fan, D. L. Piron, A. Sleb and P. Paradis, J. Electrochem. Soc. 141 (1994) 382.

    Google Scholar 

  22. I. A. Raj and K. I. Vasu, J. Appl. Electrochem. 20 (1990) 32.

    Google Scholar 

  23. J. Divisek, H. Schmitz and J. Balej, J. Appl. Electrochem. 19 (1989) 519.

    Google Scholar 

  24. J. Y. Huot, M. L. Trudeau and R. Schulz, J. Electrochem. Soc. 138 (1991) 1316.

    Google Scholar 

  25. L. B. Albertini, A. C. D. Angleo and E. R. Gonzalez, J. Appl. Electrochem. 22 (1992) 888.

    Google Scholar 

  26. P. N. Pintauro, N. Phan, M. M. Baizer and K. Nobe, in ‘AIChE Symposium Series’, American Institute of Chemical Engineers (1987) vol. 83, p.34.

  27. B. D. Cullity, ‘Elements of X-ray Diffraction’, 2nd ed., Addison-Wesley, London (1978) p. 102.

    Google Scholar 

  28. A. J. Bard (ed.) ‘Encyclopedia of Electrochemistry of the Elements’, vol. 3, Marcel Dekker, New York (1975) p. 331.

    Google Scholar 

  29. H. Alemu and K. Jüttner, Electrochim. Acta 33 (1988) 1101.

    Google Scholar 

  30. R. S. S. Guzmán, J. R. Vilche and A. J. Arvia, J. Electrochem. Soc. 125 (1978) 1578.

    Google Scholar 

  31. L. Varcar and B. E. Conway, Electrochim. Acta 35 (1990) 1919.

    Google Scholar 

  32. C. Zhang and S.-M. Park, J. Electrochem. Soc. 136 (1989) 3333.

    Google Scholar 

  33. J. L. Weininger and M. W. Breiter, J. Electrochem. Soc. 110 (1963) 484.

    Google Scholar 

  34. R. E. White, J. O'M. Bockris and B. E. Conway, ‘Modern Aspects of Electrochemistry’, No. 21, Plenum Press, New York (1990) p. 47.

    Google Scholar 

  35. D. M. Mac Arthur, J. Electrochem. Soc. 117 (1970) 422.

    Google Scholar 

  36. C. M. A. Brett and A. M. O. Brett, ‘Electrochemistry Principles, Methods, and Applications’, Oxford University Press, New York (1993) p. 245.

    Google Scholar 

  37. B. J. Hwang, D. T. Shieh and A. S. T. Chang, J. ChIChE 25 (1994) 127.

    Google Scholar 

  38. D. T. Sheih and B. J. Hwang, J. ChIChE 25 (1994) 87.

    Google Scholar 

  39. L. Brossard and C. Messier, J. Appl. Electrochem. 23 (1993) 379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, Y.L., Chou, S.C. & Hwang, B.J. Characterization of electroless Ni-Mo-P/SnO2/Ti electrodes for oxygen evolution in alkaline solution. J Appl Electrochem 26, 733–740 (1996). https://doi.org/10.1007/BF00241514

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00241514

Keywords

Navigation