Skip to main content
Log in

Hydrogen evolution reaction on electrocatalytic materials highly dispersed on carbon powder

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Highly dispersed electrocatalytic materials were obtained by vacuum deposition of catalytic metals on electromechanically suspended graphite powder particles. Graphite electrodes, vacuum-deposited with various metals (Ni, Pt, Au, Pd, Rh) or an alloy (Cu-Al), were bonded with an inorganic polymer, LaPO4. A.c. impedance and steady-state polarization methods were used to investigate the mechanism and kinetics of the hydrogen evolution reaction (HER) in 1m KOH at 25°C for Pt/C, Pd/C and Rh/C electrodes. It was concluded that the HER follows a Volmer-Heyrovsky mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Enyo, in ‘Comprehensive treatise of electrochemisty’, vol. 7, (edited by B. E. Conway, J. O'M. Bockris, E. Yeager, S. V. M. Khan and R. E. White), Plenum Press, New York (1988) p. 241.

  2. B. E. Conway, Sci. Progr. Oxford 71 (1987) 479.

    Google Scholar 

  3. J. O'M. Bockris, in ‘Comprehensive treatise of electrochemistry’, vol. 3, op cit. [1], (1981), pp. 1–505.

    Google Scholar 

  4. H. Wendt and G. Imarisio, J. Appl. Electrochem. 18 (1988) 1.

    Google Scholar 

  5. J. Divisek, J. Electroanal. Chem. 214 (1986) 615.

    Google Scholar 

  6. A. J. Appleby, H. Kita, M. Chemla and G. Bronoël, ‘Encyclopedia of electrochemistry of the elements, vol. IXB, (edited by A. J. Bard), Dekker, New York, p. 383; H. Kita J. Electrochem. Soc. 113 (1966) 1095.

  7. H. Wendt (ed.), ‘Electrochemical hydrogen technologies’. Electrochemical production and combustion of hydrogen, Elsevier, Amsterdam and Tokyo (1990).

    Google Scholar 

  8. G. T. Bowen, H. J. Davis, B. F. Henshaw, R. Lachance, R. L. Leroy and R. Renaud, Int. J. Hydrogen Energy 9 (1984) 59.

    Google Scholar 

  9. K. Lohrberg and P. Kohl. Electrochim. Acta 29 (1984) 1557.

    Google Scholar 

  10. B.V. Tilak, A.C. Ramamurthy and B.E. Conway, Proc. Indian. Surf. Sci., (Chem. Sci.) 97 (1986) 359.

    Google Scholar 

  11. E. Endoh, H. Otouma, T. Morimoto and Y. Oda, Int. J. Hydrogen Energy 12 (1987) 473.

    Google Scholar 

  12. B. E. Conway and L. Bai, 1 (1986) 533.

    Google Scholar 

  13. B. E. Conway, H. Angerstein-Kozlowska and M. A. Sattar, J. Electrochem. Soc. 130 (1983) 1825.

    Google Scholar 

  14. D. E. Brown, M. N. Mahmood, M. C. M. Man and A. K. Turner, Electrochim. Acta 29 (1984) 1551.

    Google Scholar 

  15. D. E. Hall, J. Appl. Electrochem. 14 (1984) 107.

    Google Scholar 

  16. , J. Electrochem. Soc. 124 (1981) 740.

    Google Scholar 

  17. E. Potvin, H. Menard, J.-M. Lalancette and L. Brossard, J. Appl. Electrochem. 20 (1990) 252.

    Google Scholar 

  18. J.-M. Lalancette, H. Menard and E. Potvin, US Patent 4 886 591 (1989).

  19. E. Potvin, H. Menard, L. Brossard and J.-M. Lalancette, Int. J. Hydrogen Energy 15 (1990) 843.

    Google Scholar 

  20. H. Dumont, P. K. Wrona, L. Brossard, J.-M. Lalancette and H. Menard, J. Appl. Electrochem 22 (1992) 1049.

    Google Scholar 

  21. H. Menard, J. Fournier, L. Brossard, J.-M. Lalaneette, US Patent 2130870 submitted.

  22. R. N. Adams, ‘Electrochemistry at solid electrodes’, Dekker, New York (1969).

    Google Scholar 

  23. J. Fournier, P. K. Wrona, A. Lasia, R. Lacasse, J.-M. Lalancette, H. Menard and L. Brossard, J. Electrochem. Soc. 13 (1992) 2372.

    Google Scholar 

  24. H. Dumont, PhD. thesis, Université de Sherbrooke, Sherbrooke, Quebec, Canada (1994).

    Google Scholar 

  25. M. Caron, Geol. Surv. Bull. (US) 1036 (1958) 253.

    Google Scholar 

  26. D. F. Mullica, W. O. Milligan, D. A. Grossie, G. W. Beall, L. A. Bootner, Inorganica Chemica Acta 95 (1984) 231.

    Google Scholar 

  27. L. Holland, ‘Vacuum deposition of thin films’, Chapman & Hall, London (1970).

    Google Scholar 

  28. S. Dushman, ‘Scientific foundations of vacuum technique’, J. M. Lafferty, Editor, New York and London (1962).

  29. D. A. Harrington and B. E. Conway, Electrochim. Acta 32 (1987) 1703.

    Google Scholar 

  30. J. Chevallier, Thin Solid Films 40 (1977) 223.

    Google Scholar 

  31. M. Baldauf and D. M. Kolb, Electrochimi. Acta 38 (1993) 2145.

    Google Scholar 

  32. B. E. Conway and G. Jerkiewicz, J. Electroanal. Chem. 357 (1993) 47.

    Google Scholar 

  33. A. Lasia and A. Rami, 294 (1990) 123.

    Google Scholar 

  34. G. J. Brug, A. L. G. van der Eeden, M. Sluyters-Rehbach, and J. Sluyters, 176 (1984) 275.

    Google Scholar 

  35. J. R. Macdonald (ed.), ‘Impedance spectroscopy’, Wiley & Sons, New York (1987).

    Google Scholar 

  36. P. K. Wrona, A. Lasia, H. Menard and M. Lessard, Electrochim. Acta 37 (1990) 1283.

    Article  CAS  PubMed  Google Scholar 

  37. R. L. Brodd and N. Hackerman, J. Electrochem. Soc. 104 (1957) 704.

    Google Scholar 

  38. M. Keddam and H. Takenouti, Electrochim Acta 33 (1988) 445.

    Google Scholar 

  39. T. Pajkossy, J. Electroanal. Chem. 300 (1991) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournier, J., Ménard, H. & Brossard, L. Hydrogen evolution reaction on electrocatalytic materials highly dispersed on carbon powder. J Appl Electrochem 25, 923–932 (1995). https://doi.org/10.1007/BF00241586

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00241586

Keywords

Navigation