Skip to main content
Log in

Factors affecting bioleaching kinetics of sulfide ores using acidophilic micro-organisms

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

Recovery of metal values from sulfide ores by use of acidophilic microorganisms is gaining importance. A number of commercial/pilot plants are setup to find out the techno-economic feasibility of the overall process. The main drawback in the process is the slow kinetics of dissolution of metal values from the sulfide ores. To make the technology e attractive the kinetics should be improved considerably. There are various factors which determine the overall kinetics such as bacterial activity and concentration, iron and sulfur oxidation, oxygen consumption, reactor design and nature of ore. A brief review has been made dealing with the above parameters

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahonen L, Tuovinen OH. 1989 Microbial oxidation of Fe(II) at low temperature, Appl Environ Biotechnol 55, 312–316.

    Google Scholar 

  • Ahonen L, Tuovinen OH. 1994 Solid phase alteration and iron transformation in column bioleaching of a complex sulfide ore, ACS Symp Ser 550 (Env. Geochemistry of sulfide oxidation) 79–89.

    Google Scholar 

  • Ahonen L, Tuovinen OH. 1990 Silver catalysis of the bacterial leaching of chalcopyrite containing ore materials in column reactors. Min Eng 3, 437–445.

    Google Scholar 

  • Amaro AM, Chamorro D, Seeger M, Arredondo R, Peirano I, Jerez C A. 1991 Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans. J Bacteriol, 173(2), 910–915.

    Google Scholar 

  • Apel AW, Dugan RP. 1978 Hydrogen ion utilization by iron grown Thiobacillus ferrooxidans: Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena. Eds. Murr EL, Torma AE, Brierley AJ, Academic Press, New York, San Francisco, London, 45–58.

    Google Scholar 

  • Attia YA, Eleky M, Ismail M 1993 Int J Min Proc. 37, 61

    Google Scholar 

  • Babij T, Madgwick JC. 1993 High yield bacterial leaching of copper concentrate, Proc Aust Inst Min Met 287, 61–64.

    Google Scholar 

  • Bailey AD, Hansford GS. 1993, Factors affecting bio-oxidation of sulfide minerals at high concentrations of solids. Biotech Bioeng 42,1164–1174

    Google Scholar 

  • Ballester A, Gonzalev F, Blazquez ML, Gomez C, Mier JL. 1992 The use of catalytic ions in bioleaching. Hydromet 29, 145–160.

    Google Scholar 

  • Barr DW, Jordan MA, Norris PR, Phillips CV. 1992 An investigation into bacterial cell, Fe(II), pH and Eh interactions during thermophilic leaching of copper concentrate, Miner Eng 5, 557–567.

    Google Scholar 

  • Bhattacharya D, Hsieh M, Francis H, Kermode RI, Khalid AM, Aleem HMI. 1990 Biological desulfurization of coal by mesophilic and thermophilic microorganisms, Res Cons Recyl 3, 81–96.

    Google Scholar 

  • Bhattacharya P, Sarkar P, Mukherjee RN. 1990 Copper leaching from low grade ore, Enzyme-Microb Technol, 12, 11, 873–76

    Google Scholar 

  • Bhattacharya S, Das A, Chakrabarti BK, Banerjee PC 1992 A comparative study of characteristic properties of Thiobacillus ferrooxidans strains, Folia Microbiol 37, 169–175.

    Google Scholar 

  • Blake RC, Ginness S Mc. 1993 Electron-transfer proteins of bacteria that respire on iron, Biohydrometall.Technol. Proc Int Biohydrometall Symp, 2, 615–628.

    Google Scholar 

  • Blake RC, Shute EA. 1994 Respiratory enzymes of T. ferrooxidans. Kinetic properties of an acid-stable Iron-Rusticyanin Oxido-reductase, Biochemistry, 33(31), 9220–9228

    Google Scholar 

  • Blake RC, Shute EA, Greenwood MM, Spencer GH, Ingledew WJ. 1993 Thiobacillus ferrooxidans, Leptospirrillum ferrooxidans and Metallosphaera sedula application in metal leaching: a review, FEMS-Microbiol Rev 11, 1–3, 9–18.

    Google Scholar 

  • Boogerd FC, Bos P, Kuenen JG, Heijnen JJ, Van der Lans RGJM. 1990 Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme thermophiles: A case study related to the microbial desulfurization of coal. Biotech Bioeng 35, 1111–1119.

    Google Scholar 

  • Boogerd SC, Beemd CVD, Stoelwinder T, Bos P, Kuenen JG. 1991 Relative contribution of biological and chemical reaction to the overall rate of pyrite oxidation at temperatures between 30° and 70°. Biotech Bioeng, 38, 109–115

    Google Scholar 

  • Boon M. 1996 Theoretical and experimental methods in the modeling of Biooxidation kinetics of sulfide minerals, Ph.D. Thesis (Delft University).

  • Brierley CL. 1993 Practical role of thermophilic bacteria in bioleaching and biooxidation. BIOMINE-93.

  • Brierley CL, Brans R. 1994 Selection of Bactech's thermophilic bio-oxidation process for Youanmi Mine, Biomine-94.

  • Buchanan RE, Gibbons RE. 1974 Bergey's Manual Of Determinative Bacteriology, Baltimore.

  • Canterford JH, Davey PT, Tsambourakis T. 1985 Gangue mineral dissoloution and jarosite formation in copper solution mining, Hydromet. 13, 327–343.

    Google Scholar 

  • Chia LM, Choi WK, Ghay R, Torma AE. 1989 Electrochemical aspects of pyrite oxidation by Thiobacillus ferrooxidans during leaching of a Canadian uranium ore. Biohydrometallurgy Proc Int Symp Edts Salley J, McCready RGL, Wichlacz PL, 35–47.

  • Curutechet G, Pogliani C, Donati E, Tedesco P. 1992 Effect of Fe(III) and its hydrolysis products (jarosite) on Thiobacillus ferrooxidans growth and on bacterial leaching. Biotechnol Lett 14, 329–334.

    Google Scholar 

  • Das A, Mishra AK. 1996 Anaerobic and aerobic pyrrhotite, copper concentrate and pyrite oxidation and solubulization using sulfur (sulfide) dependent ferric ion oxidoreductase, application in leaching, Appl Microbial Biotechnol. 45,3, 377–82.

    Google Scholar 

  • Dew DW, Miller DM, Van Aswegen PC 1993 GEMIN's commercialization of the bacterial oxidation process for the treatment of refractory gold concentrates, in Randol Gold Forum, Beaver Creek 93, Randol International Ltd., Golden, Co., 229–237.

  • Donaldson J, Grimes S, Tadesse B. 1992 (July) Cobalt transport in the environment-II-Bioleaching of gold. Cobalt News 12–13.

  • Elzeky M, Attia YA 1995, Effect of bacterial adaptation on kinetics and mechanisms of bioleaching ferrous sulfides. Chem Eng J, 56(2), B115-B125.

    Google Scholar 

  • Espejo RT, Ruiz P. 1987 Growth of free and attached Thiobacillus ferrooxidans in ore suspension, Biotech Bioeng 30, 586–592.

    Google Scholar 

  • Fraser GM. 1993 Mixing and oxygen transfer in mineral bioleaching, Biomine' 93, 16.1–16.11.

  • Gormely L. 1990 Mathematical modeling of oxygen transfer in a stirred tank bioreactor, Adv. Gold and Silver Processing, Nevada, USA, 217–223.

  • Gormely L. 1992 Mechanical agitation and aeration in hydrometallurgical reactors. Hydromet 29, 217–230.

    Google Scholar 

  • Grishin SI, Kachelkin AV, Adamov EV, Gusakov SE, Larin VK, Pendrov ED. 1991 Intensification of ferrous iron oxidation process using fixed film biomass (Thiobacillus ferrooxidans), 17th Int Mineral Proces Congr. 5, 91–104.

    Google Scholar 

  • Grishin SI, Tuovinen OH. 1988 Fast kinetics of Fe(II) oxidation in packed bed reactors. Appl Environ Microbiol 54, 3093–3110.

    Google Scholar 

  • Hanzhao L, Yongduo J. 1995 The search for a process to recover Au from sub microscopic ores rich in As and C, IX IMP, 4, 9.

    Google Scholar 

  • Hazen W, Bijleveld W, Grotenhnis JTC, Kakes E, Kuenen JG. 1986 Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans. Antonie V. Leeuwenhoek, 52, 507–518.

    Google Scholar 

  • Hazen W, Schmedding DJ, Goddijin O, Bos P, Kuenen JG. 1987 The importance of the sulfur oxidizing capacity of Thiobacillus ferrooxidans during during leaching of pyrite. Proc. 4th Europ. Congr. Biotech. Edts. Neysel OM, Meervander RR, Lujben KChAM, 3, 497–499.

  • Helle U, Onken U. 1988 Continuous bacterial leaching of a pyrite concentrate by Leptospirillum like bacteria, Appl. Microbiol Biotechnol 28, 553–558.

    Google Scholar 

  • Hirt WE, Vestal JR. 1975 Physical and chemical studies of Thiobacillus ferrooxidans, lipopolysaccharides, J. Bacteriol, 123, 642–650.

    Google Scholar 

  • Hiskey JB, Phule PP, Pritzker M D 1987 Studies on the effect of addition of silver ions on direct oxidation of pyrite. 116th AIME Annu. Meet, Denver.

  • Hiskey JB, Bhapu R. 1987 Role of oxygen in dump leaching, Proc Int Symp Impact Oxygen Production Non-ferrous Metall Proces, Edts Kachaniwsky G, Newman CJ, 165–183.

  • Hoffman W, Batterham R, Conochie D. 1993 Design of a reactor bioleach process for refractory gold treatment, FEMS Microbiol Rev 11, 221–230.

    Google Scholar 

  • Holmes DS, Debus KA. 1991 Opportunities for biological metal recovery. Mineral Bioprocessing Edts. Smith RW, Misra M, TMS, 53–78.

  • Jordan MA, Barr DW, Phillips CV. 1993 Iron and sulfur speciation and cell surface hydrophobicity during bacterial oxidation of a complex copper concentrate. Miner Eng. 6(8–10), 1001–1011.

    Google Scholar 

  • Jordan MA, Mcginness S, Phillips CV. 1996 Acidophilic bacteria — their potential mining and environmental applications. Minerals Engineering, 9(2), 169–181.

    Google Scholar 

  • Jyothi N, Sudha KN, Natarajan KA. 1989 Electrochemical aspects of selectivity bioleaching of sphalerite and chalcopyrite from mixed sulfides. Int J Min Proc 27, 189–203.

    Google Scholar 

  • Kai M, Yano T, Fukumori Y, Yammanaka T. 1989 Cytochrome Oxidase of an acidophilic iron oxidizing bacterium, Thiobacillus ferrooxidans functions at pH 3.5, Biochem Biophys Res Commun. 160, 839–843.

    Google Scholar 

  • Kar RN, Roy Chaudhury G, Sukla LB, Das RP. 1991 Kinetics of iron oxidation as well as precipitation by Thiobacillus ferrooxidans.in presence and absence of various metal ions. Erzmetal 44, 212–215.

    Google Scholar 

  • Karavaiko, GI 1988 Microorganisms & their significance for biotechnology of metals: Biogeotechnology of Metals. Manual. Edts. Karavaiko GI, Rossi G, Agate AD, Groudev SN, Avakyan ZA, Centre for International Projects GKNT, Moscow.

    Google Scholar 

  • Karavaiko GI Golovacheva RS, Pivovarova TA, Tzaplina IA, Vartanjan NS. 1988. Thermophilic bacteria of the genus Sulfobacillus. Biohydrometallurgy: International Symp 1987, Edts Norris PR, Kelly DP, 29–41.

  • Konishi I, Asai S. 1993 A biochemical engineering approach to the of pyrite in the batch continuos tank reactors. In: Biohydrometallurgical Technologies Proc Int Symp. Wyoming, (Eds) Torma AE, Wey JE, Lakshmanan VI. 1, 259–268.

  • Kuenen JG, Pronk JT, Hazen W, Meulenber R, Bas P. 1993 Areview of bioenergetics and enzymology of sulfur compound oxidation by acidophilic Thiobacilli Biohydromet. Technol Proc Int Biohydrometall Symp 2, 287–94.

    Google Scholar 

  • Lindstrom EB, Gunneriusson L. 1990 Thermophilic bioleaching of arsenopyrite using Sulfolobus and semi continuous laboratory procedure, J Ind Microbiol 5, 375–382.

    Google Scholar 

  • Liu MS, Branion RMR, Duncan DW. 1987 Oxygen transfer in Thiobacillus cultures. Biohydrometall Proc Int Symp Edts. Norris PR, Kelly DP 375–384.

  • Lizama HM, Suzuki I. 1989 Bacterial leaching of sulfide ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidans, Part II, Column leaching studies. Hydromet., 22(3), 301–310.

    Google Scholar 

  • Lizama HM, Suzuki I. 1988 Bacterial leaching of a sulfide ore by Thiobacillus ferrooxidans: Shake flask studies. Biotech. & Bioeng. 32, 110–116.

    Google Scholar 

  • Mason J, Kelly DP, Wood AP. 1987, Chemolithotrophic and autotrophic growth of Thiobacillus thiooxidans and some Thiobacilli on thiosulphate and polythionates and a reassessment of growth yields of Thiobacillus thiooxidans in chemostat culture, J Gen Microbiol 133, 1249–1256.

    Google Scholar 

  • Menon AG, Dave SR. 1995, Growth behavior of various Thiobacillus ferrooxidans isolates on different substrates. Trans Ind Inst Met 48(2), 135–138.

    Google Scholar 

  • Miller DM, Hansford GS. 1992 Batch biooxidation of a gold-bearing pyrite arsenopyrite concentrate, Miner Eng 5, 613–629.

    Google Scholar 

  • Morris PR, Barr DW. 1985 Growth and iron oxidation of acidophilic moderate thermophiles, FEMS Microbiol Lett 28, 221.

    Google Scholar 

  • Murayama T, Konna Y, Sakata T, Imaizumi T. 1987 Application of immobilised Thiobacillus ferrooxidans for large scale treatment of acid mine drainage. Methods Enzymol 136, 530–540.

    Google Scholar 

  • Natarajan KA. 1992 Application of applied potential and growth of Thiobacillus ferrooxidans, Biotech Bioeng 39, 907–913.

    Google Scholar 

  • Natarajan KA. 1988 Electrochemical aspects of multisulfide minerals. Miner Metall Process, 5, 61–65.

    Google Scholar 

  • Natarajan KA. 1992 Electrobioleaching of base metal sulfides, Met Trans 23B, 5–11.

    Google Scholar 

  • Natarajan KA. 1995 Biomineral Beneficiation, Mineral processing, Recent Advances and Future trends. Edts. Mehrotra SP, Shekhar R (Allied Publisher), 489

  • Nicholson HM, Smith GR, Stewart RJ, Kock FW, Marais HJ. 1994 Design and commissioning of Ashati's Sansu BIOX plant, Biomine-94.

  • Nikolov LN, Valkova-Vulchanova M, Mekhochev D. 1988 Oxidation of high ferrous iron oxidation concentrations by chemolithotrophic Thiobacillus ferrooxidans in packed bed bio-reactors. J Bacteriol 7, 87–94.

    Google Scholar 

  • Normal PF, Snijman CP. 1987 The biological and chemical leaching of an auriferous pyrite/aresenopyrite flotation concentrate: a microscopic examination. Geomicrobiol J 6, 1–10.

    Google Scholar 

  • Nunzi F, Bruschi M. 1993 Iron oxidn. by T. ferrooxidans structure, function, relationships of a blue copper protein rusticyanin, Biohydrometall Technol Proc Int Biohydrometall. Symp., 2, 603–613.

    Google Scholar 

  • Nyavor K, Egiebor NO, Fedorak PM. 1996, the effect of ferric ion on the rate of ferrous oxidation by Thiobacillus ferrooxidans. Appl. Microbial. Biotechnol. 45(5), 688–691.

    Google Scholar 

  • Ohmura N, Tsugita K, Koizumi J, Saika H. 1996 J Bacteriol. 178, 5776.

    Google Scholar 

  • Ohmura N, Kitamura K, Saiki H. 1993 Selective adhesion of Thiobacillus ferrooxidans to pyrite. Appl. Environ. Microbiol. 59(12), 4044–50.

    Google Scholar 

  • Oolman T, Nagpal S, Dahlstrom DA. 1990 Oxygen and carbon dioxide consumption with steady state continuous flow bioleaching. Adv Gold and Silver Proccessing, Nevada, USA, 237–245.

  • Palencia I, Wan RY, Miller JD. 1991 The electrochemical behaviour of a semicoducting natural pyrite in the presence of bacteria. Met Trans 22B, 765–774.

    Google Scholar 

  • Pantelis G, Ritchie AIM. 1992 Rate-limiting factors in dump leaching of pyrite ores, Appl Math Modelling 16, 553–560.

    Google Scholar 

  • Pantelis G, Ritchie AIM. 1991 Macroscopic transport mechanism as a rate limiting factor in dump leaching of pyrite ores. Appl Math Modelling 15, 136–143

    Google Scholar 

  • Pesic B, Oliver DJ, Wichlacz P. 1989 An electrochemical method of measuring the oxidation rate of Fe(II) to Fe(III) with oxygen in the presence of Thiobacillus ferroxidans. Biotech Bioeng 33, 428–439.

    Google Scholar 

  • Pesic B, Kim I. 1993 Electrochemistry of Thiobacillus ferrooxidans interactions with pyrite. Metallurgical Transactions 24B, 717–727.

    Google Scholar 

  • Pogliani C, Curutchet G, Donati E, Tedesco PH. 1990 A need for direct contact with particle surfaces in bacterial oxidation of covellite in absence of chemical lixiviant, Biotechnol Lett 12, 515–518.

    Google Scholar 

  • Pott BM, Olson G, Larson L, Karlsson HT, Holst O. 1995 Consecutive desulphurization of coal with Thiobacillus ferrooxidans and Acidianus brierleyi, Res Env Biotech 1, 21–32.

    Google Scholar 

  • Ralph BJ. 1985 Biotechnology applied to raw mineral processing, Comprehensive Biotechnology, Vol. IV, Edt. Moo-Young M, Pergamon.

  • Rao SR, Finch JA. 1988 Galvanic interaction studies on sulfide minerals, Can Metll Q 27, 253–259.

    Google Scholar 

  • Rawlings DE, Pretrins IM, Woods DR. 1986 Expression of Thiobacillus ferrooxidans, plasmid, functions and the development of genetic system for the Thiobacilli. Biotechnol Bioeng Symp. 16, 281–287.

    Google Scholar 

  • Rodriguez-Levia M, Tributsch H. 1988 Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite. ArchMicrobiol. 149, 401–405.

    Google Scholar 

  • Roy P, Misra AK. 1981 Factors affecting oxidation of pyrite by Thiobacillus ferrooxidans, Ind J of Exptl Biol 19, 728–732.

    Google Scholar 

  • Sato A, Fukumori Y, Yano T, Kai M, Yamanka T. 1989 Thiobacillus ferrooxidans. cytochrome-c, purification and some of its molecular features. Biochim Biophys Acta. 976, 129–134.

    Google Scholar 

  • Seeger M, Jerez CA. 1993, Phosphate-starvation induced changes in Thiobacillus ferrooxidans. FEMS Microbial Lett. 108, 35.

    Google Scholar 

  • Silverman MP 1967 Mechanism of bacterial pyrite oxidation. J Bacteriol. 94, 1046

    Google Scholar 

  • Sohn HY, Wadsworth ME. 1979 In Rate processes of extractive metallurgy, Edts. Sohn H Y, Wadsworth M E, Plenum.

  • Srihari B, Modak SR, Kumar JM, Gandhi KS 1992 Dissolution of sulfur by Thiobacillus ferrooxidans: Substrate for unattached cells. Biotechnol Bioeng. 41, 612

    Google Scholar 

  • Sugio T, Akhter F. 1996 Thiobacillus mediated leaching and the effect of hydrogen sulfide ferric ion oxidoreductase activity, J Ferment Bioeng. 8,4, 346–50.

    Google Scholar 

  • Sukla LB, Roy Chaudhury G, Das RP. 1990 Effect of silver ion on kinetics of biochemical leaching of chalcopyrite concentrate. Trans Inst Min Met 90, C43-C46.

    Google Scholar 

  • Summers AO, Roy P, Davidson MS, 1986 Current techniques for the genetic manipulation of bacteria and their application to the study of sulfur-based autotrophy in Thiobacillus. Biotechnol Bioeng Symp. 16, 267–279.

    Google Scholar 

  • Suzuki H, Tanaka T, Tano T, Sugio T. 1993 Existence of sulfide-binding protien in iron-oxidizing bacteria, Biohydrometall Technol Proc Int. of Biohydrometall Symp. 2, 423–31

    Google Scholar 

  • Torma AE, 1988 Use of Biotechnology in Mining and Metallurgy, Biotech Adv. 6, 1–8.

    Google Scholar 

  • Torma AE. 1991 In: New Trends in Biohydrometallurgy, Proc Min Bioproc. California, 43–55.

  • Toro L, Paponetti B, Cantalini C. 1986 Precipitate formation in the oxidation of Ferrous ion in the presence of Thiobacillus ferrooxidans. Hydromet. 20, 1–9.

    Google Scholar 

  • Tuovinen OH, Kelly BC, Groudev SN. 1991 Mixed-culture in biological leaching processes and mineral biotechnology, Mixed cultures in Biotechnology, Eds. Zeikus, J. G., Johnson, E. A.; McGraw Hills, New York.

    Google Scholar 

  • Tuovinen OH, Puhakka J, Hiltunen P, Dolan KM. 1985 Silver toxicity to Fe(II) iron and pyrite oxidation and its alleviation by yeast extract in cultures of Thiobacillus ferrooxidans. Biotech Lett. 7, 389–394.

    Google Scholar 

  • Verbaan B, Huberts R. 1988 An electrochemical study of bacterial leaching of synthetic Ni3S2. Int J Min Proc 24, 185–202.

    Google Scholar 

  • Vestal JR, Lundgren DG, Milner KG. 1973 Toxic and Immunological differences among lipopolysaccharides from Thiobacillus ferrooxidans, grown autotrophically and heterotrophically, Can. J.Microbiol. 19, 1335–1339.

    Google Scholar 

  • Wang E, Guan G. 1992 Bacterial leaching of high-arsenic gold ores, Dongbei Gongxueyuan Xuebao, 13(6), 527–32.

    Google Scholar 

  • Wichlacz PC, Unz RF, Langworthy TA, 1986 Acidiphilum anguslum, A. facilis and A. rubrum: acidophillic heterotrophic bacteria isolated from acidic coal mine drainage, Int. J. Syst. Bacteriol, 36, 197–201.

    Google Scholar 

  • Wiertz JV. 1993 Ferrous and sulfur oxidation by Thiobacillus ferroxidans, Biohydrometall Technol Proc Int. Biohydrometall. Symp. 2, 463–71.

    Google Scholar 

  • Yunker SB, Radovich JM, 1986 Enhancement of growth and ferrous iron oxidation rates of Thiobacillus ferrooxidans by electrochemical reduction of ferric iron, Biotech Bioeng. 28, 1867–1875.

    Google Scholar 

  • Yunkur, SB, Radovich, JM. 1985 Enhanced growth of Thiobacillus ferrooxidans in an electrolytic bioreactor, Biotechnol Bioeng Symp Ser. 15, 307–319.

    Google Scholar 

  • Zuo-Mei J, Warren GW, Henein, H. 1984 Reaction kinetics of ferric chloride leaching of sphalerite — an experimental study. Metall Trans. B. 15B, 5–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, T., Ayyappan, S. & >Chaudhury, G. Factors affecting bioleaching kinetics of sulfide ores using acidophilic micro-organisms. Biometals 12, 1–10 (1999). https://doi.org/10.1023/A:1009228210654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009228210654

Navigation