Skip to main content
Log in

Interaction effects on persistent current of ballistic cylindrical nanostructures

  • Mesoscopic Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We investigate clean cylindrical nanostructures with an applied longitudinal static magnetic field. The ground state of these systems becomes degenerate for particular values of the field due to Aharonov-Bohm effect. The Coulomb interaction introduces couplings between the electronic configurations. Consequently, depending on particular selection rules, the ground state may become, in the interacting case, a many body state at the degeneracy points: a gap is then opened. To study this problem, we propose a variational multireference wave function which goes beyond the Hartree-Fock approximation. Using this ansatz, in addition to the replacements of some crossings by avoided crossings, two other important effects of the electron-electron interaction are pointed out: (i) the long-range part of the Coulomb potential tends to shift the position in magnetic field of the crossing or avoided crossing points and, (ii) at the points of degeneracy or near degeneracy, the interaction can drive the system from a singlet to a triplet state inducing new real crossing points in the ground state energy curve as function of the field. In any case, the crossing points that are due to either orbital or spin effects, should manifest themselves in various experiments as sudden changes in the response of the system (magnetoconductance, magnetopolarisability, ...) when the magnetic field is tuned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Ehrenfest, Physica 5, 388 (1925); P. Ehrenfest, Z. Phys. 58, 719 (1929); L. Pauling, J. Chem. Phys. 4, 673 (1936); F. London, J. Phys. Radium 8, 397 (1937)

    Google Scholar 

  • Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    MATH  MathSciNet  ADS  Google Scholar 

  • N. Byers, C.N. Yang, Phys. Rev. Lett. 7, 46 (1961)

    Article  ADS  Google Scholar 

  • L.P. Levy, G. Dolan, J. Dunsmuir, H. Bouchiat, Phys. Rev. Lett. 64, 2074 (1990); V. Chandrasekhar, R.A. Webb, M.J. Brady, M.B. Ketchen, W.J. Gallagher, A. Kleinsasser, Phys. Rev. Lett. 67, 3578 (1991); D. Mailly, C. Chapelier, A. Benoit, Phys. Rev. Lett. 70, 2020 (1993); E.M.Q. Jariwala, P. Mohanty, M.B. Ketchen, R.A. Webb, Phys. Rev. Lett. 86, 1594 (2001)

    ADS  Google Scholar 

  • S. Iijima, Nature 354, 56 (1991); S. Iijima, T. Ishihashi, Nature 363, 603 (1993)

    Article  ADS  Google Scholar 

  • A. Bachtold, C. Strunk, J.P. Salvetat, J.M. Bonard, L. Forro, T. Nussbaumer, C. Schönenberger, Nature 397, 673 (1999)

    ADS  Google Scholar 

  • H. Ajiki, T. Ando, J. Phys. Soc. Jpn 62, 1255 (1993); S. Zaric, G.N. Ostojic, J. Kono, J. Shaver, V.C. Moore, M.S. Strano, R.H. Hauge, R.E. Smalley, X. Wei, Science 304, 1129 (2004); E.D. Minot, Y. Yaish, V. Sazonova, P.L. McEuen, Nature 428, 536 (2004); J. Cao, Q. Wang, M. Rolandi, H. Dai, Phys. Rev. Lett. 93, 216803 (2004)

    ADS  Google Scholar 

  • H.R. Shea, R. Martel, Ph. Avouris, Phys. Rev. Lett. 84, 4441 (2000)

    ADS  Google Scholar 

  • S. Latil, S. Roche, A. Rubio, Phys. Rev. B 67, 165420 (2003)

    Article  ADS  Google Scholar 

  • M. Büttiker, Y. Imry, R. Landauer, Phys. Lett. A 96, 365 (1983)

    Article  ADS  Google Scholar 

  • P. Mohanty, Ann. Phys. (Leipzig) 8, 549 (1999); U. Eckern, P. Schwab, J. Low. Temp. Phys. 126, 1291 (2001)

    ADS  Google Scholar 

  • R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, 1998)

  • A.A. Ovchinnikov, Phys. Lett. A 195, 95 (1994)

    ADS  Google Scholar 

  • M. Szopa, M. Margańska, E. Zipper, Phys. Lett. A 299, 593 (2002)

    ADS  Google Scholar 

  • F.V. Kusmartsev, J. Phys.: Condens. Matter 3, 3199 (1991); N. Yu, M. Fowler, Phys. Rev. B 45, 11 795 (1992)

    ADS  Google Scholar 

  • R. Kotlyar, C.A. Stafford, S. Das Sarma, Phys. Rev. B 58, 3989 (1998)

    ADS  Google Scholar 

  • A. Müller-Groeling, H.A. Weidenmüller, C.H. Lewenkoff, Europhys. Lett. 22, 193 (1993)

    ADS  Google Scholar 

  • K. Niemelä, P. Pietiläinen, P. Hyvönen, T. Chakraborty, Europhys. Lett. 36, 533 (1996)

    ADS  Google Scholar 

  • D. Loss, Phys. Rev. Lett. 69, 343 (1992)

    ADS  Google Scholar 

  • F.V. Kusmartsev, JETP Lett. 60, 649 (1994)

    ADS  Google Scholar 

  • G. Bouzerar, D. Poilblanc, Phys. Rev. B 52, 10 772 (1995); M. Ramin, B. Reulet, H. Bouchiat, Phys. Rev. B 51, 5582 (1995)

    Google Scholar 

  • H.F. Cheung, Y. Gefen, E. Riedel, IBM J. Res. Develop. 32, 359 (1988)

    Article  Google Scholar 

  • P. Fulde, A.A. Ovchinnikov, Eur. Phys. J. B 17, 623 (2000); S. Pleutin, A.A. Ovchinnikov, Eur. Phys. J. B 23, 521 (2001); S. Pleutin, A.A. Ovchinnikov, Ann. Phys. (Leipzig) 11, 411 (2002)

    ADS  Google Scholar 

  • M. Stebelski, M. Szopa, E. Zipper, Z. Phys. B 103, 79 (1997)

    ADS  Google Scholar 

  • S. Roche, G. Dresselhaus, M.S. Dresselhaus, R. Saito, Phys. Rev. B 62, 16092 (2000)

    Article  ADS  Google Scholar 

  • E.N. Bogachek, G.A. Godadze, Zh. Eksp. Teor. Fiz. 63, 1839 (1972) [Soviet Phys.-JETP 36, 973 (1973)]; I.O. Kulik, ZhETF Pis. Red. 11, 407 (1970) [JETP Lett. 11, 275 (1970)]

    Google Scholar 

  • L. Salem, The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York, 1966; D. Baeriswyl, D.K. Campbell, S. Mazumdar, in Conjugated Conducting Polymers, edited by H. Kiess (Springer-Verlag, Heidelberg, 1992), pp. 7–133

  • A. Müller-Groeling, H.A. Weidenmüller, Phys. Rev. B 49, 4752 (1994)

    ADS  Google Scholar 

  • M. Kamal, Z.H. Musslimani, A. Auerbach, J. Phys. I France 5, 1487 (1995)

    Google Scholar 

  • J. Frenkel, Wave Mechanics, Advanced General Theory (Clarendon Press, Oxford, 1934)

  • E. Dalgaard, P. Jorgensen, J. Chem. Phys. 69, 3833 (1978)

    ADS  Google Scholar 

  • B. Levy, G. Berthier, Int. J. Quantum Chem. 2, 307 (1968)

    Google Scholar 

  • L. Wendler, V.M. Fomin, Phys. Rev. 51, 17814 (1995); L. Wendler, V.M. Fomin, A.V. Chaplik, Sol. Stat. Comm. 96, 809 (1995)

    Google Scholar 

  • Y. Oreg, K. Byczuk, B.I. Halperin, Phys. Rev. Lett. 85, 365 (2000)

    ADS  Google Scholar 

  • H.U. Baranger, D. Ullmo, L.I. Glazman, Phys. Rev. B 61, R2425 (2000)

  • R. Deblock, Y. Noat, H. Bouchiat, B. Reulet, D. Mailly, Phys. Rev. Lett. 84, 5379 (2000)

    ADS  Google Scholar 

  • M.R. Buitelaar, A. Bachtold, T. Nussbaumer, M. Iqbal, C. Schönenberger, Phys. Rev. Lett. 88, 156801 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pleutin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pleutin, S. Interaction effects on persistent current of ballistic cylindrical nanostructures. Eur. Phys. J. B 43, 405–419 (2005). https://doi.org/10.1140/epjb/e2005-00071-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00071-1

Keywords

Navigation