Skip to main content
Log in

Ripple formation over a sand bed submitted to a laminar shear flow

  • Hydrodynamics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We investigate the process of ripple formation in a viscous fluid when a sand bed is submitted to a laminar shear flow. We propose a new description for the sand transport which takes into account the fact that the transport rate does not adapt instantaneously to a change of the fluid velocity due to grain inertia. It introduces a new length, called here after equilibrium length leq, corresponding to the distance needed for a immobile grain to equilibrate its velocity with that of the fluid. The transport rate is therefore found to depend not only on the fluid shear stress and bed slope (as usually assumed) but also on grain inertia. Within the framework of this model we analyzed the mechanisms of the sand bed instability. It is found that the instability results from the competition between the destabilizing effect of fluid inertia and the stabilizing ones of grain inertia and bed slope. We derive analytical scaling laws for the most amplified wavelength, its growth rate and phase velocity. We found in particular that at small particle Reynolds number Rep, the most amplified wavelength scales as the viscous length lν defined as \(\sqrt{\nu/\gamma}\) (where γ is the shear rate and ν the fluid viscosity) and at large Rep it scales as the equilibrium length leq. Our results are compared with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Fredsoe, R. Deigaard, Mechanics of Coastal Sediment Transport (World Scientific, 1992)

  • J.F. Kennedy, J. Fluid Mech. 16, 521 (1963)

    MATH  ADS  Google Scholar 

  • J.F. Kennedy, Ann. Rev. Fluid Mech. 1, 147 (1969)

    ADS  Google Scholar 

  • M.H. Gradowczyk, J. Fluid Mech. 33, 93 (1968)

    MATH  ADS  Google Scholar 

  • S.E. Coleman, J.D. Fenton, J. Fluid Mech. 418, 101 (2000)

    MATH  ADS  Google Scholar 

  • K.J. Richards, J. Fluid Mech. 99, 597 (1980)

    MATH  ADS  Google Scholar 

  • B.M. Sumer, M. Bakioglu, J. Fluid Mech. 144, 117 (1984)

    Google Scholar 

  • J. Nikuradse, V.D.I.-Forschungheft, no. 361 (1933)

  • J.D. Smith, S.R. McLean, J. Geophys. Res. 82, 1735 (1977)

    Article  ADS  Google Scholar 

  • S.E. Coleman, B.W. Melville, J. Hydr. Engng. ASCE 122, 301 (1996)

    Google Scholar 

  • M.S. Yalin, J. Hydr. Engng. ASCE 111, 1148 (1985)

    Article  Google Scholar 

  • F. Charru, H. Mouilleron-Arnould, J. Fluid Mech. 452, 303 (2002)

    MATH  ADS  Google Scholar 

  • T. Loiseleux, D. Doppler, P. Gondret, J.-M. Rabaud, in Second Intertational Workshop on Marine Sandwave and River Dynamics, edited by J.M.H. Hulscher, T. Garlan, D. Idier (University of Twente, Enschede 2004), pp. 200

  • G. Sauermann, K. Kroy, H.J. Herrmann, Phys. Rev. E 64, 031305 (2001)

    ADS  Google Scholar 

  • B. Andreotti, P. Claudin, S. Douady, Eur. Phys. J. B 28, 341 (2002)

    ADS  Google Scholar 

  • P. Hersen, Eur. Phys. J. B. 37, 507 (2004)

    ADS  Google Scholar 

  • J.-P. Bouchaud, M.E. Cates, R. Prakash, S.F. Edwards, Phys. Rev. Lett. 74, 1982 (1995)

    ADS  Google Scholar 

  • A. Valance, unpublished (2004)

  • F. White, Viscous Fluid Flow, McGraw-Hill (New-York, 1974)

  • P. Mantz, Sedimentology 25, 83 (1977)

    Google Scholar 

  • R.A. Bagnold, Phil. Trans. R. Soc. Lond. A 249, 235 (1956)

    ADS  MathSciNet  Google Scholar 

  • F. Charru, E.J. Hinch, J. Fluid Mech. 414, 195 (2000)

    MATH  ADS  MathSciNet  Google Scholar 

  • A. Betat, V. Frette, I. Rehberg, Phys. Rev. Lett. 83, 88 (1999)

    ADS  Google Scholar 

  • A. Betat, C.A. Kruelle, V. Frette, I. Rehberg, Eur. Phys. J. E 8, 465 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Valance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valance, A., Langlois, V. Ripple formation over a sand bed submitted to a laminar shear flow . Eur. Phys. J. B 43, 283–294 (2005). https://doi.org/10.1140/epjb/e2005-00050-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00050-6

Keywords

Navigation