Skip to main content
Log in

Spectral pairs in cartesian coordinates

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Let Ω ⊂ℝd have finite positive Lebesgue measure, and let\(\mathcal{L}^2\) (Ω) be the corresponding Hilbert space of\(\mathcal{L}^2\)-functions on Ω. We shall consider the exponential functionse λ on Ω given bye λ(x)=e i2πλ·x. If these functions form an orthogonal basis for\(\mathcal{L}^2\) (Ω), when λ ranges over some subset Λ in ℝd, then we say that (Ω, Λ) is a spectral pair, and that Λ is a spectrum. We conjecture that (Ω, Λ) is a spectral pair if and only if the translates of some set Ω′ by the vectors of Λ tile ℝd. In the special case of Ω=Id, the d-dimensional unit cube, we prove this conjecture, with Ω′=Id, for d≤3, describing all the tilings by Id, and for all d when Λ is a discrete periodic set. In an appendix we generalize the notion of spectral pair to measures on a locally compact abelian group and its dual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benedicks, M. (1985). On Fourier transforms of functions supported on sets of finite Lebesgue measure,J. Math. Anal. Appl.,106, 180–183.

    Google Scholar 

  2. de Jeu, M.F.E. (1994). An uncertainty principle for integral operators,J. Funct. Anal,122, 247–253.

    Google Scholar 

  3. Donoho, D.L. and Stark, P.B. (1989). Uncertainty principles and signal recovery,SIAM J. Appl. Math.,49, 906–931.

    Google Scholar 

  4. Dunford, N. and Schwartz, J.T. (1963).Linear Operators, Vol. II, Wiley (Interscience), New York.

    Google Scholar 

  5. Folland, G.B. and Sitaram, A. (1997). The uncertainty principle: A mathematical survey,J. Fourier Anal. Appl. 3, 207–238.

    Google Scholar 

  6. Fuglede, B. (1974). Commuting self-adjoint partial differential operators and a group theoretic problem,J. Funct. Anal. 16, 101–121.

    Google Scholar 

  7. Gruber, P.M. and Lekkerkerker, C.G. (1987).Geometry of Numbers, 2nd ed., North-Holland Mathematical Library, Vol. 37, North-Holland Publishing, Amsterdam.

    Google Scholar 

  8. Hewitt, E. and Ross, K.A. (1963).Abstract Harmonic Analysis, I, Springer-Verlag, Berlin.

    Google Scholar 

  9. Hof, A. (1995). On diffraction by aperiodic structures,Comm. Math. Phys.,169, 25–43.

    Google Scholar 

  10. Iosevich, A. and Pedersen, S. (1998). Spectral and tiling properties of the unit cube,Internat. Math. Res. Notices,16, 819–828.

    Google Scholar 

  11. Jorgensen, P.E.T. (1982). Spectral theory of finite volume domains in ℝn,Adv. in Math.,44, 105–120.

    Google Scholar 

  12. Jorgensen, P.E.T. (1988).Operators and Representation Theory: Canonical Models for Algebras of Operators Arising in Quantum Mechanics, North-Holland Mathematics Studies, No. 147, Notas de Matemática, No. 120, North-Holland, Amsterdam.

    Google Scholar 

  13. Jorgensen, P.E.T. and Pedersen, S. (1987). Harmonic analysis on tori,Acta Appl. Math.,10, 87–99.

    Google Scholar 

  14. Jorgensen, P.E.T. and Pedersen, S. (1991). An algebraic spectral problem for L2(Ω),Ω⊂ℝn,C. R. Acad. Sci. Paris Ser. I Math.,312, 495–498.

    Google Scholar 

  15. Jorgensen, P.E.T. and Pedersen, S. (1992). Spectral theory for Borel sets in ℝn of finite measure,J. Funct. Anal,107, 72–104.

    Google Scholar 

  16. Jorgensen, P.E.T. and Pedersen, S. (1993). Group-theoretic and geometric properties of multivariable Fourier series,Exposition. Math.,11, 309–329.

    Google Scholar 

  17. Jorgensen, P.E.T. and Pedersen, S. (1993). Harmonic analysis of fractal measures induced by representations of a certain C*-algebra,Bull. Amer. Math. Soc., (N.S.)29, 228–234.

    Google Scholar 

  18. Jorgensen, P.E.T. and Pedersen, S. (1994). Harmonic analysis and fractal limit-measures induced by representations of a certain C*-algebra,J. Funct. Anal.,125, 90–110.

    Google Scholar 

  19. Jorgensen, P.E.T. and Pedersen, S. (1995). Estimates on the spectrum of fractals arising from affine iterations,Fractal Geometry and Stochastics, Bandt, C., Graf, S., and Zähle, M. Eds., Progress in Probability, Vol. 37, Birkhäuser, Basel, 191–219.

    Google Scholar 

  20. Jorgensen, P.E.T. and Pedersen, S. (1996). Harmonic analysis of fractal measures,Constr. Approx.,12, 1–30.

    Google Scholar 

  21. Keller, O.H. (1930). Über die lückenlose Einfüllung des Raumes mit Würfeln,J. Reine Angew. Math.,163, 231–248.

    Google Scholar 

  22. Keller, O.H. (1937). Ein Satz über die lückenlose Erfüllung des 5-und 6-dimensional Raumes mit Würfeln,J. Reine Angew. Math.,177, 61–64.

    Google Scholar 

  23. Kolountzakis, M.N. and Lagarias, J.C. (1996). Structure of tilings of the line by a function,Duke Math. J.,82, 653–678.

    Google Scholar 

  24. Landau, H.J. (1967). Necessary density conditions for sampling and interpolation of certain entire functions,Acta Math.,117, 37–52.

    Google Scholar 

  25. Lagarias, J.C., Reeds, J.A., and Wang, Y. (1998).Orthonormal bases of exponentials for the n-cube, preprint, AT&T Labs.

  26. Lagarias, J.C. and Shor, P.W. (1992). Keller's cube-tiling conjecture is false in high dimensions,Bull. Amer. Math. Soc.,27, 279–287.

    Google Scholar 

  27. Lagarias, J.C. and Wang, Y. (1996). Tiling the line with translates of one tile,Invent. Math.,124, 341–365.

    Google Scholar 

  28. Lagarias, J.C. and Wang, Y. (1997). Integral self-affine tiles in ℝn, II: Lattice tilings,J. Fourier Anal. Appl.,3, 83–102.

    Google Scholar 

  29. Lagarias, J.C. and Wang, Y. (1997). Spectral sets and factorizations of finite abelian groups,J. Funct Anal.,145, 73–98.

    Google Scholar 

  30. Pedersen, S. (1987). Spectral theory of commuting self-adjoint partial differential operators,J. Funct. Anal.,73, 122–134.

    Google Scholar 

  31. Pedersen, S. (1996). Spectral sets whose spectrum is a lattice with a base,J. Funct. Anal.,141, 496–509.

    Google Scholar 

  32. Pedersen, S. (1997).Fourier Series and Geometry, preprint, Wright State University, 1997.

  33. Perron, O. (1940). Über lückenlose Ausfüllung des n-dimensionalen Raumes durch kongruente Würfel,Math. Z,46, 1–26, 161–180.

    Google Scholar 

  34. Reed, M. and Simon, B. (1975).Methods of Modern Mathematical Physics II: Fourier Analysis, Selfadjointness, Academic Press, New York.

    Google Scholar 

  35. Stein, S.K. and Szabo, S. (1994).Algebra and Tiling: Homomorphisms in the Service of Geometry, Carus Mathematical Monographs, Vol. 25, Mathematical Association of America, Washington, DC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Henry J. Landau

Dedicated to the memory of Irving E. Segal

Acknowledgements and Notes, Work supported by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jorgensen, P.E.T., Pedersen, S. Spectral pairs in cartesian coordinates. The Journal of Fourier Analysis and Applications 5, 285–302 (1999). https://doi.org/10.1007/BF01259371

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01259371

Math Subject Classifications

Keywords and phrases

Navigation