Skip to main content
Log in

Optical signal processing with magnetostatic waves

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Magneto-optical devices based on Bragg diffraction of light by magnetostatic waves (MSWs) offer the potential of large time-bandwidth optical signal processing at microwave frequencies of 1 to 20 GHz and higher. A thin-film integrated-optical configuration, with the interacting MSW and guided-optical wave both propagating in a common ferrite layer, is necessary to avoid shape-factor demagnetization effects. The underlying theory of the MSW-optical interaction is outlined, including the development of expressions for optical diffraction efficiency as a function of MSW power and frequency, device geometry, materials properties, and other relevant parameters. Recent experimental observations of anisotropic Bragg diffraction and collinear TE↔TM mode conversion induced by MSWs in yttrium iron garnet (YIG) thin films suggest that high-performance MSW integrated-optical devices are feasible. Diffraction levels as large as 4% (7-mm interaction length) and a modulation dynamic range of ∼30 db have been demonstrated. Potential signal processing applications are mentioned, including: spectrum analyzers, convolvers/correlators, deflectors, non-reciprocal optical isolators, and tunable narrowband optical filters. Advantages of these MSW-based devices over the analogous acousto-optical devices include: much greater operating frequencies, tuning through the MSW dispersion relation by varying either the rf frequency or the applied bias magnetic field, simple MSW transducer structures (e.g., a single stripline), and the potential for very high diffraction efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abe, M. Gomi, and S. Nomuma, “Magneto-optical properties of FeBO3 and YFeO3 their application to optical devices,”Ferrites: Proc of the ICF-3, p. 782 (Reidel, Boston, 1980).

    Google Scholar 

  2. J. D. Adam, T. W. O'Keefe, and M. R. Daniel, “Magnetostatic wave devices for microwave signal processing,” Proc. SPIE241, 96 (1980).

    Google Scholar 

  3. L. K. Anderson, “Observation of optical interaction with ferrimagnetic resonance,” Appl. Phys. Lett.1, 44 (1962).

    Google Scholar 

  4. B. A. Auld, “Magnetostatic and magnetoelastic wave propagation in solids,”Applied Solid State Science, Vol. 2, p. 2 (Academic, New York, 1971).

    Google Scholar 

  5. N. J. Berg and John N. Lee,Acousto-Optic Signal Processing Theory and Implementation (Marcel Dekker, New York, 1983).

    Google Scholar 

  6. I.C. Chang, “Tunable Acousto-optic filters, an overview,” Opt. Eng.16, 455 (1977).

    Google Scholar 

  7. D. Chen, “Magneto-optic materials,”Handbook of Lasers, R. J. Pressley, Ed. (CRC, Cleveland, 1971).

    Google Scholar 

  8. J. D. Cohen, “Incoherent-light time-integrating processors,”Acousto-optic Signal Processing Theory and Implementation, N. J. Berg and J. N. Lee, Eds. (Marcel Dekker, New York, 1983).

    Google Scholar 

  9. J. H. Collins and D. A. Wilson, “Optical probing of magnetostatic modes in YIG delay lines,” Appl. Phys. Lett.12, 331 (1968).

    Google Scholar 

  10. R. W. Damon and J. R. Eshbach, “Magnetostatic modes of a ferromagnet slab,” J. Phys. Chem. Solids.19, 308 (1961).

    Google Scholar 

  11. J. F. Dillon and J. P. Remeika, “Visual observations of magnetostatic modes,” Appl. Phys. Lett.2, 38 (1963).

    Google Scholar 

  12. R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys.38, 5149 (1967).

    Google Scholar 

  13. R. W. Dixon, “Acoustic diffraction of light in anisotropic crystals,” IEEE J. Quan. Elec.QE-3, 85 (1967).

    Google Scholar 

  14. G. Doriath, R. Gaudry, and P. Hartemann, “A sensitive and compact magnetometer using Faraday effect in YIG waveguides,” J. Appl. Phys.53, 8263 (1982).

    Google Scholar 

  15. P. R. Emtage, “Interactions of magnetostatic waves with a current,” J. Appl. Phys.49, 4475, (1978).

    Google Scholar 

  16. A. D. Fisher, J. N. Lee, E. S. Gaynor, and A. B. Tveten, “Optical guided-wave interactions with magneto-static waves at microwave frequencies,” Appl. Phys. Lett.41, 779 (1982).

    Google Scholar 

  17. A. D. Fisher, E. S. Gaynor, and J. N. Lee, “Magnetostatic wave devices for integrated-optical signal processing,” Proc. 1983 IEEE Ultrasonics Symp. (1983).

  18. A. K. Ganguly and D. C. Webb, “Microstrip excitation of magnetostatic surface waves,” IEEE Trans. Microwave Th. and Tech.MTT-23, 998 (1975).

    Google Scholar 

  19. J. T. Hanlon and J. F. Dillon, “Microwave modulation of light in ferromagnetic resonance,” J. Appl. Phys.36, 1269 (1965).

    Google Scholar 

  20. P. Hansen, K. Witter, and W. Tolksdorf, “Magnetic and magneto-optic properties of lead-and bismuth-substituted yittrium iron garnet films,” Phys. Rev. B.27, 6608 (1983).

    Google Scholar 

  21. D. L. Hecht, “Acousto-Optic device techniques-400 to 2300 MHz,” Proc. 1977 IEEE Ultrasonics Symp. 721 (1977).

  22. G. Hepner, J. P. Castera, and B. Desormiere, “Magnetic stripe domain deflector in integrated optics,” Appl. Opt.15, 1683 (1976).

    Google Scholar 

  23. H. L. Hu and F. R. Morganthaler, “Strong infrared-light scattering from coherent spin waves in YIG,” Appl. Phys. Lett.18, 307 (1971).

    Google Scholar 

  24. S. T. Kirsch, W. A. Biolsi, S. L. Blank, P. K. Tien, R. J. Martin, P. M. Bridenbaugh, and P. Grabbe, “Semileaky thin film optical isolator,” J. Appl. Phys.52, 3190 (1981).

    Google Scholar 

  25. D. E. Lacklison, G. B. Scott, H. I. Ralph, and J. L. Page, “Garnets with high magnetooptic figures of merit in the visible region,” IEEE Trans. on MagneticsMAG-9, 457 (1973).

    Google Scholar 

  26. L. D. Landau and E. M. Lifshitz,Electrodynamics of Continuous Media (Addison-Wesley, Reading, MA, 1960).

    Google Scholar 

  27. D. Mergerian and E. C. Malarkey, “Integrated optics,”Acousto-Optic Signal Processing Theory and Implementation, N. J. Berg and J. N. Lee, Eds. p. 373–453 (Marcel Dekker, New York, 1983).

    Google Scholar 

  28. J. M. Owens, L. Carter, C. V. Smith, and J. H. Collins, “Magnetostatic waves, microwave SAW?,” Proc. 1980 IEEE Ultrasonics Symp., 512 (1980).

  29. S. F. Sauter, M. M. Hanson, and D. L. Fleming, “Multifunction integratedoptic device using magnetically alterable phase gratings,” Appl. Phys. Lett.30, 11 (1977).

    Google Scholar 

  30. A. Shibukawa and M. Kobayashi, “Optical TE-TM mode conversion in double epitaxial garnet waveguides,” Appl. Opt.20, 2444 (1981).

    Google Scholar 

  31. A. W. Smith, “Diffraction of light by magnetoelastic waves,” IEEE Trans. Sonics and UltrasonicsSU-15, 161 (1968).

    Google Scholar 

  32. G. A. Smolensky, A. N. Ageev, S. A. Mironov, and V. N. Greednev, “Optical phenoma in thin-film ferrite waveguides and their applications,”Ferrites: Proc of the ICF-3, (Reidel, Boston, 1980).

    Google Scholar 

  33. P. K. Tien, R. S. Martin, R. Wolfe, R. C. LeCraw, and S. L. Blank, “Switching and modulation of light in magneto-optic waveguides of garnet films,” Appl. Phys. Lett.21, 394 (1972).

    Google Scholar 

  34. C. S. Tsai, “Guided-wave acoustooptic Bragg modulators for wide-band integrated optic communications and signal processing,” IEEE Trans on Circuits and Systems,CAS-26, 1076 (1979).

    Google Scholar 

  35. C. Vittoria and N. D. Wilsey, “Magnetostatic wave propagation losses in an anisotropic insulator,” J. Appl. Phys.45, 414 (1974).

    Google Scholar 

  36. S. H. Wemple, J. F. Dillon, L. G. Van Uitert, and W. H. Grodkiewicz, “Iron garnet crystals for magneto-optic light modulators at 1.064μm,” Appl. Phys. Lett.22, 331 (1973).

    Google Scholar 

  37. D. L. Wood and J. P. Remeika, “Effect of impurities on the optical properties of yittrium iron garnet,” J. Appl. Phys.38, 1038 (1967).

    Google Scholar 

  38. A. Yariv, “Coupled mode theory for guided-wave optics,” IEEE J. Quan. Elec.QE-9, 919 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, A.D. Optical signal processing with magnetostatic waves. Circuits Systems and Signal Process 4, 265–284 (1985). https://doi.org/10.1007/BF01600085

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01600085

Keywords

Navigation