Skip to main content
Log in

Constructing analytical energy functions for lossless network-reduction power system models: Framework and new developments

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The task of constructing an energy function is essential for direct stability analysis of electric power systems. This paper presents a general procedure for constructing analytical energy functions for detailed lossless network-reduction power system stability models. This paper primarily (i) develops canonical representations for lossless networkreduction power system models and shows that such canonical representations cover existing stability models, (ii) derives theoretical results regarding the existence of analytical energy functions for the canonical representations, and (iii) presents a systematic procedure to construct corresponding energy functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Abed and P. P. Varaiya, Nonlinear oscillations in power systems,Int. J. Electrical Power and Energy Systems, 6(1):37–43, 1984.

    Article  Google Scholar 

  2. R. Abraham, J. E. Marsden, and T. Raitu,Manifolds, Tensor Analysis and Applications, vol. 75 ofApplied Mathematical Sciences, Springer-Verlag, New York, 1988.

    Google Scholar 

  3. J. C. Alexander, Oscillatory solutions of a model system of nonlinear swing equations,Int. J. Electrical Power and Energy Systems, 8:130–136, 1986.

    Article  Google Scholar 

  4. A. Arapostathis, S. S. Sastry, and P. Varaiya, Global analysis of swing dynamics,IEEE Trans. Circuits and Systems, CAS-29:673–679, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Athay, R. Podmore, and S. Virmani, A practical method for the direct analysis of transient stability,IEEE Trans. Power Apparatus and Systems, PAS-98:573–584, 1979.

    Google Scholar 

  6. P. D. Aylett, The energy integral-criterion of transient stability limits of power systems,Proceedings of IEEE, 105c(8):527–536, September 1958.

    Google Scholar 

  7. U. di Caprio, Accounting for transfer conductance effects in Lyapunov transient stability analysis of a mutlimachine power system,Int. J. Electrical Power and Energy Systems, 8:27–41, 1986.

    Article  Google Scholar 

  8. H. D. Chiang, Study of the existence of energy functions for power systems with losses,IEEE Trans. Circuits and Systems, CAS-36(11):1423–1429, 1989.

    Article  MathSciNet  Google Scholar 

  9. H. D. Chiang and C. C. Chu, Theoretical foundation of the BCU method for direct stability analysis of lossy network-reduction power system models,IEEE Trans. Circuits and Systems: Part I: Fundamental Theory and Applications, vol. 41, pp. 252–265, May 1995.

    Article  Google Scholar 

  10. H. D. Chiang, C. C. Chu, and J. Cauley, Direct stability analysis of electric power systems using energy functions: Theory, applications and perspective,Proceedings of IEEE,83(11:1497–1529, September 1995.

    Article  Google Scholar 

  11. H. D. Chiang and L. Fekih-Ahmed, On the direct method for transient stability analysis of power system structure preserving models, inIEEE International Symposium on Circuits and Systems, pp. 2545–2548, 1992.

  12. H. D. Chiang, F. F. Wu, and P. P. Varaiya, Foundations of the potential energy boundary surface method for power system transient stability analysis,IEEE Trans. Circuits and Systems, CAS-34: 160–173, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  13. H. D. Chiang, F. F. Wu, and P. P. Varaiya, A BCU method for direct analysis of power system transient stability,IEEE Trans. Power Systems, PAS-8(3):1194–1208, 1994.

    Article  Google Scholar 

  14. C. C. Chu, Transient dynamics of electric power systems: Direct stability assessment and chaotic motions, Ph.D. thesis, Cornell University, Ithaca, NY, January 1996.

    Google Scholar 

  15. C. A. Desoer and M. Vidyasagar,Feedback Systems: Input-Output Properties, Academic Press, New York, 1975.

    MATH  Google Scholar 

  16. A. H. El-Abiad and K. Nagappan, Transient stability regions for multi-machine power systems,IEEE Trans. Power Apparatus and Systems, PAS-85:169–179, 1966.

    Google Scholar 

  17. R. Fischl, F. Mercede, F. F. Wu, and H. D. Chiang, Comparison of dynamic security indices based on direct methods,Int. J. Electrical Power and Energy Systems, 10(4):210–232, 1988.

    Article  Google Scholar 

  18. A. A. Fouad and V. Vittal,Power System Transient Stability Analysis: Using the Transient Energy Function Method, Prentice-Hall, Englewood Cliffs, NJ, 1991.

    Google Scholar 

  19. G. E. Gless, Direct method of Lyapunov applied to transient power system stability,IEEE Trans. Power Apparatus and Systems, PAS-85:164–179, 1966.

    Google Scholar 

  20. U. Guadra, A general Liapunov function for multi-machine power systems with transfer conductances,Int. J. Control, 21(2):333–343, 1975.

    Google Scholar 

  21. P. C. Magnusson, Transient energy method of calculating stability,AIEE Trans., 66:747–755, 1947.

    Google Scholar 

  22. H. Miyagi and A. R. Bergen, Stability studies of multimachine power systems with the effects of automatic voltage regulators,IEEE Trans. Auto. Control, AC-31:210–215, 1986.

    Article  MATH  Google Scholar 

  23. J. R. Munkres,Topology: A First Course, Prentice-Hall, Englewood Cliffs, NJ, 1976.

    Google Scholar 

  24. N. Narasimhamurthi, On the existence of energy functions for power systems with transmission losses,IEEE Trans. Circuits and Systems, CAS-31:199–203, 1984.

    Article  MATH  Google Scholar 

  25. M. A. Pai,Energy Function Analysis for Power System Stability, Kluwer Academic Publishers, Boston, MA, 1989.

    Google Scholar 

  26. M. Ribbens-Pavella and F.J. Evans, Direct methods for studying dynamics of large-scale electric power systems—A survey,Automatica,21(1):1–21, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Ribbens-Pavella and P.G. Murthy,Transient Stability of Power Systems: Theory and Practice, Wiley, New York, 1994.

    Google Scholar 

  28. W. Rudin,Principles of Mathematical Analysis, McGraw-Hill, New York, 1976.

    MATH  Google Scholar 

  29. H. Sasaki, An approximate incorporation of fields flux decay into transient stability analysis of multi-machine power systems by the second method of Lyapunov,IEEE Trans. Power Apparatus and Systems, PAS-98(2):473–483, 1979.

    Google Scholar 

  30. S. Sastry and M. Bodson,Adaptive Control: Stability, Convergence, and Robustness, Prentice-Hall, Englewood Cliffs, NJ, 1989.

    MATH  Google Scholar 

  31. M. W. Siddiqee, Transient stability of an ac generator by Lyapunov's direct method,Int. J. Control,8(2):131–144, 1968.

    Google Scholar 

  32. P. P. Varaiya, F. F. Wu, and R.-L. Chen, Direct methods for transient stability analysis of power systems: Recent results,Proceedings of IEEE, 73:1703–1715, 1985.

    Article  Google Scholar 

  33. J. L. Williems, Comments on transient stability of an ac generator by Lyapunov's direct method,Int. J. Control,10(1):113–116, 1969.

    Google Scholar 

  34. J. L. Williems, Direct methods for transient stability studies in power system analysis,IEEE Trans. Auto. Control, AC-16(4):332–341, 1971.

    Article  Google Scholar 

  35. H. K. Wimmer, Inertia theorems for matrices, controllability, and linear vibrations,Linear Algebra and Its Applications,8:337–343, 1974.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the National Science Council, Republic of China, under Grants NSC 86-2213-E-182-006 and NSC 87-TPE-E-182-002.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, CC., Chiang, HD. Constructing analytical energy functions for lossless network-reduction power system models: Framework and new developments. Circuits Systems and Signal Process 18, 1–16 (1999). https://doi.org/10.1007/BF01206541

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01206541

Keywords

Navigation