Skip to main content
Log in

Measuring molecular variation in zooplankton populations: DNA extraction from smallDaphnia species

  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

We present methods developed for the small-sizedDaphnia species,D. galeata, D. hyalina, D. cucullata, and their hybrids, which facilitate the use of DNA variation in population studies. Described are large-scale production of material from single genotypes ofDaphnia and subsequent extraction of total DNA. The average DNA yields ranged between 6 µg per gram wet weight (D. cucullata) and 12 µg per gram wet weight (D. galeata). For comparison, the large-sized speciesD. pulex was tested and yielded an average of 28 µg DNA per gram wet weight. The DNA isolated in this manner lends itself well to molecular genetic techniques suited for population studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baudouin, M. F. and P. Scoppa, 1975. The determination of nucleic acids in freshwater plankton and its ecological implications. Freshwater Biology 5:115–120.

    Google Scholar 

  • Bamstedt, U. and H. R. Skjoldal, 1980. RNA concentration of zooplankton: relationship with size and growth. Limnol. Oceanogr. 25:304–316.

    Google Scholar 

  • Crease, T. J., D. J. Stanton and P. D. N. Hebert, 1989. Polyphyletic origins of asexuality inDaphnia pulex. II. Mitochondrial-DNA variation. Evolution 43:1016–1026.

    Google Scholar 

  • Davis, L. G., M. D. Dibner and J. F. Battey, 1986. Basic Methods in Molecular Biology, Elsevier, New York, 388 pp.

    Google Scholar 

  • Densmore, L. D., J. W. Wright and W. M. Brown, 1985. Length variation and heteroplasmy are frequent in mitochondrial DNA from parthenogenetic and bisexual lizards (GenusCnemidophorus). Genetics 110:689–707.

    PubMed  Google Scholar 

  • Flössner, D., 1972. Die Tierwelt Deutschlands, 60. Teil, Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Hartl, D. L. and A. G. Clark, 1989. Principles of population genetics, second edition, Sinauer Associates, Sunderland, Massachusetts, 682 pp.

    Google Scholar 

  • Hebert, P. D. N., 1978. The population biology ofDaphnia (Crustacea, Daphnidae). Biol. Rev. 53:387–426.

    Google Scholar 

  • Hebert, P. D. N., 1987. Genotypic characteristics of the Cladocera. Hydrobiologia 145:183–193.

    Google Scholar 

  • Hebert, P. D. N. and T. J. Crease, 1980. Clonal coexistence inDaphnia pulex (Leydig): Another planktonic paradox. Science 207:1363–1365.

    Google Scholar 

  • Hebert, P. D. N. and R. D. Ward, 1972. Inheritance during parthenogenesis inDaphnia magna. Genetics 71:639–642.

    PubMed  Google Scholar 

  • Hrbáček, J., 1987. Systematics and biogeography ofDaphnia species in the northern temperate region. In: R. H. Peters and R. DeBernardi (eds.)Daphnia. Mem. Ist. Ital. Idrobiol. 45:37–76.

    Google Scholar 

  • Innis, M. A., D. H. Gelfand, J. J. Sninsky and T. J. White, 1990. PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego, 482 pp.

    Google Scholar 

  • Ish-Horowicz, D., S. M. Pinchin, P. Schedl, S. Artavanis-Tsakonas and M. E. Mirault, 1979. Genetic and molecular analysis of the 87A7 and 87C1 heat-inducible loci ofD. melanogaster. Cell 18:1351–1358.

    PubMed  Google Scholar 

  • Lamb, T. and J. C. Avise, 1986. Directional introgression of mitochondrial DNA in a hybrid population of tree frogs: the influence of mating behavior. Proc. Natl. Acad. Sci. USA 83:2526–2530.

    Google Scholar 

  • Lynch, M., 1983. Ecological genetics ofDaphnia pulex. Evolution 38:186–203.

    Google Scholar 

  • Maynard Smith, J., 1989. Evolutionary Genetics. Oxford University Press, Oxford, 325 pp.

    Google Scholar 

  • McKee, M. J. and C. O. Knowles, 1987. Levels of protein, RNA, DNA, glycogen and lipid during growth and development ofDaphnia magna Straus (Crustacea: Cladocera). Freshwater Biology 18:341–351.

    Google Scholar 

  • Moritz, C., T. E. Dowling and W. M. Brown, 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Ann. Rev. Ecol. Syst. 18:269–292.

    Google Scholar 

  • Mort, M. A. and H. G. Wolf, 1986. The genetic structure of large-lakeDaphnia populations. Evolution 40:756–766.

    Google Scholar 

  • Peters, R. H., 1987. Metabolism inDaphnia. In: R. H. Peters and R. DeBenardi (eds.),Daphnia, Mem. Ist. Ital. Idrobiol. 34:37–76.

    Google Scholar 

  • Rand, D. M. and R. G. Harrison, 1989. Molecular population genetics of mtDNA size variation in crickets. Genetics 121:551–569.

    PubMed  Google Scholar 

  • Sambrook, J., E. F. Fritsch and T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory Press, New York, 3 volumes.

    Google Scholar 

  • Trentini, M., 1980. Chromosome numbers of nine species of Daphniidae (Crustacea: Cladocera). Genetica 54:221–223.

    Google Scholar 

  • Wolf. H. G. and M. A. Mort, 1986. Inter-specific hybridization underlies phenotypic variability inDaphnia populations. Oecologia 68:507–511.

    Google Scholar 

  • Zaffagnini, F., 1987. Reproduction inDaphnia. In: R. H. Peters and R. DeBernardi (eds.),Daphnia, Mem. Ist. Ital. Idrobiol. 45:254–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Reprint requests to B. Streit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mort, M.A., Streit, B. Measuring molecular variation in zooplankton populations: DNA extraction from smallDaphnia species. Aquatic Science 54, 77–84 (1992). https://doi.org/10.1007/BF00877265

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877265

Key words

Navigation