Skip to main content
Log in

Kinetic analysis and simulation of glucose transport in plasma membrane vesicles of glucose-repressed and derepressedSaccharomyces cerevisiae cells

  • Multi-Author Review
  • Published:
Experientia Aims and scope Submit manuscript

Summary

In this study experimental data on the kinetic parameters investigated by other authors1–5, 11 together with own data on plasma membrane vesicles, have been subjected to a computer simulation based on the equations describing facilitated diffusion. The simulation led to an ideal fit describing the above data. From this it can be concluded that glucose is transported by facilitated diffusion, and not by active transport as was postulated by Van Steveninck14, 15.

The simulation method also demonstrates that the fast sampling technique used by these authors1–5,11 underestimates the fluxes. Thus, the parameters given do not contribute to the understanding of glucose transport under different metabolic conditions.

The K value of plasma membrane vesicles prepared from glucose-repressed cells is around 7 mM. Derepression, particularly by galactose, causes a highly significant increase in affinity as shown by a decrease in the K value to 2 mM. The highest affinity was measured in a triple kinaseless mutant grown on glycerol with a K value of 1 mM. If seems, therefore, that the kinetic parameters derived from initial uptake rates of glucose in intact cells1–5,11 using single flux analysis, such as Eadie-Hofstee- or Lineweaver-Burk-plots, are in error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bisson, L. F., High-affinity glucose transport inSaccharomyces cerevisiae is under general glucose repression control. J. Bact.170 (1988) 4838–4845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bisson, L. F., and Fraenkel, D. G., Involvement of kinases in glucose and fructose uptake bySaccharomyces cerevisiae. Proc. natl Acad. Sci. USA80 (1983) 1730–1734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bisson, L. F., and Fraenkel, D. G., Transport of 6-deoxyglucose inSaccharomyces cerevisiae. J. Bact.155 (1983) 995–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bisson, L. F., and Fraenkel, D. G., Expression of kinase-dependent glucose uptake inSaccharomyces cerevisiae. J. Bact.159 (1984) 1013–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bisson, L. F., Neigeborn, L., Carlson, M., and Fraenkel, D. G., The SNF3 gene is required for high-affinity glucose transport inSaccharomyces cerevisiae. J. Bact.169 (1987) 1656–1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fiechter, A., Fuhrmann, G. F., and Käppeli, O., Regulation of glucose metabolism in growing yeast cells. Adv. Microbiol. Physiol.22 (1981) 123–183.

    Article  CAS  Google Scholar 

  7. Fuhrmann, G. F., Asymmetrical properties of glucose transport in human erythrocytes, in: Erythrocytes, Thrombocytes, Leukocytes, pp. 102–105. Eds E. Gerlach, K. Moser, E. Deutsch and W. Wilmanns. Georg Thieme Publisher, Stuttgart 1973.

    Google Scholar 

  8. Fuhrmann, G. F., Transport studies in red blood cells by measuring light scattering. Meth. Enzymol.173 (1989) 263–280.

    Article  CAS  Google Scholar 

  9. Fuhrmann, G. F., Boehm, C., and Theuvenet, A. P. R., Sugar transport and potassium permeability in yeast plasma membrane vesicles. Biochim. biophys. Acta433 (1976) 583–596.

    Article  CAS  PubMed  Google Scholar 

  10. Kreutzfeldt, C., and Fuhrmann, G. F., Sugar transport inSaccharomyces cerevisiae H 1022. Swiss Biotechnol.2 (1984) 24–27.

    Google Scholar 

  11. Lang, J. M., and Cirillo, V. P., Glucose transport in a kinaselessSaccharomyces cerevisiae mutant. J. Bact.169 (1987) 2932–2937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Metz, G., Goebber, F., and Röhm, K.-H., The breakdown of a tetrapeptide by yeast aminopeptidase I: Kinetic analysis in computer simulation, in: Proceedings 2nd Int. Symposium Protein Catabolism, Ljubljana. Plenum Press, New York 1977.

    Google Scholar 

  13. Röhm, K. H., Interaction of (2S, 3S)-isomer of bestatin with yeast aminopeptidase I. Hoppe-Seyler's Z. physiol. Chem.365 (1984) 1235–1246.

    Article  Google Scholar 

  14. Van Steveninck, J., Transport and transport-associated phosphorylation of 2-deoxy-D-glucose in yeast. Biochim. biophys. Acta163 (1968) 386–394.

    Article  PubMed  Google Scholar 

  15. Van Steveninck, J., The mechanism of transmembrane glucose transport in yeast: evidence for phosphorylation-associated transport. Archs Biochem. Biophys.130 (1969) 244–252.

    Article  Google Scholar 

  16. Wilbrandt, W., Carrier diffusion, in: Biomembranes., vol. 3., pp. 79–99. Eds F. Kreuzer and J. F. G. Slegers. Plenum Press, New York-London 1972.

    Google Scholar 

  17. Wilbrandt, W., and Rosenberg, T., The concept of carrier transport and its corollaries in pharmacology. Pharmac. Rev.13 (1961) 109–183.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuhrmann, G.F., Völker, B., Sander, S. et al. Kinetic analysis and simulation of glucose transport in plasma membrane vesicles of glucose-repressed and derepressedSaccharomyces cerevisiae cells. Experientia 45, 1018–1023 (1989). https://doi.org/10.1007/BF01950152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01950152

Key words

Navigation