Skip to main content
Log in

The effect of benzotriazole on mass transfer in the corrosion of a copper rotating disk electrode

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of benzotriazole, BTA, on mass transfer in dissolution-corrosion of the copper rotating disk electrode in 0.02 M Fe(III)–0.5 M H2SO4 has been studied by means of atomic absorption spectrometry. The mass transfer coefficient, K, was determined from the slope of ln(C 0/C)Fe(III) vs. time plots. In the absence of BTA the corrosion process can be described by the correlation Sh = KR/D = 4.47Re 0.5. The difference in values between Sh and Sh Levich, and the change in slope in the Arrenhius plot points to mixed control for the cathodic process Fe3+ + 1e → Fe 2+ and charge transfer control for the anodic process, Cu → Cu2+ + 2e. The average activation energies were 7.7 kJ mol−1 and 19.5 kJ mol−1 at (500–1500) and (2000–3000) rpm, respectively. At low concentration of BTA the inhibiting action of BTA increases with concentration and with rotation speed. For [BTA] ≥ 5 × 10−3 M, the K value, 10−4 cm s−1, remains constant and is independent of rotation rate. The morphology of the copper rotating disk after corrosion in the absence and presence of BTA was examined using scanning electron microscopy (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.L. Riggs, ‘Theoretical Aspects of Corrosion Inhibitors and Inhibition’, NACE, Houston, TX (1974).

    Google Scholar 

  2. R. Walker, Corrosion 29 (1973) 290.

    Google Scholar 

  3. P.G. Fox, G. Lewis and P.J. Boden, Corros. Sci. 19 (1979) 457.

    Google Scholar 

  4. S.L.F.A. da Costa, J.C. Rubim and S.M.L. Agostinho, J. Electroanal. Chem. 220 (1987) 259.

    Google Scholar 

  5. S.L.F.A. da Costa, S.M.L. Agostinho, H.C. Chagas and J.C. Rubim, Corrosion 43 (1987) 149.

    Google Scholar 

  6. S.L.F.A. da Costa and S.M.L. Agostinho, Corrosion 45 (1989) 472.

    Google Scholar 

  7. S.L.F.A. da Costa and S.M.L. Agostinho, J. Electroanal. Chem. 296 (1990) 51.

    Google Scholar 

  8. E.A. Ashour, S.M. Sayed and B.G. Ateya, J. Appl. Electrochem. 25 (1995) 137.

    Google Scholar 

  9. M.M. Laz, R.M. Souto, S. Gonzalez, R.C. Salvarezza and A.J. Arvia, J. Appl. Electrochem. 22 (1992) 1129.

    Google Scholar 

  10. G.W. Poling, Corros. Sci. 10 (1979) 359.

    Google Scholar 

  11. I.C.G. Ogle and G.W. Poling, Can. Metall. Q. 14 (1975) 37.

    Google Scholar 

  12. D. Chadwick and T. Hashemi, Corros. Sci. 18 (1978) 39.

    Google Scholar 

  13. Y.C. Wu, P. Zhang, H.W. Pickering and D.L. Allara, J. Electrochem. Soc. 140 (1993) 2791.

    Google Scholar 

  14. J.C. Rubim, I.G.R. Gutz and O. Sala, Chem. Phys. Lett. 111 (1984) 117.

    Google Scholar 

  15. D.P. Schweinsberg, S.E. Bottle, V. Otieno-Alego and T. Notoya, J. Appl. Electrochem. 27 (1997) 161.

    Google Scholar 

  16. Y. Lin, Y. Guan and K.N. Han, Corrosion 51 (1995) 367.

    Google Scholar 

  17. Z. Zembura, Corros. Sci. 8 (1968) 703.

    Google Scholar 

  18. W. Cchaefer, J. Prak. Chem. 333 (1991) 671.

    Google Scholar 

  19. A.G. Brolo, M.L.A. Temperin and S.M.L. Agostinho, J. Electroanl. Chem. 335 (1992) 83.

    Google Scholar 

  20. S.L.F.A. da Costa, S.M.L. Agostinho and K. Nobe, J. Electrochem. Soc. 140 (1993) 3483.

    Google Scholar 

  21. M.E. Orazem, P. Agarwal and L.H. García-Rubio, Mater. Sci. Forum 192–194 (1995) 563.

    Google Scholar 

  22. M. Georgiadou and R. Alkire, J. Appl. Electrochem. 28 (1998) 127.

    Google Scholar 

  23. V.G. Levich, ‘Physicochemical Hydrodynamics’, Prentice-Hall, Englewood Cliffs, New Jersey (1962).

    Google Scholar 

  24. G.H. Sedahmed, I.A.S. Mansour and G. Abdel-Latif, Britt. Corrosion, 29 (1994) 147.

    Google Scholar 

  25. G.H. Sedahmed, E. Khamis, A. Hosny, S. Kandil and M. El-Maghrabi, Anticorrosion Methods and Materials 41 (1994) 4.

    Google Scholar 

  26. G.H. Sedahmed, A. Hosny, E. Khamis, S. Kandil and M. El-Maghrabi, Anticorrosion Methods and Materials 42 (1995) 7.

    Google Scholar 

  27. J.M. Bisang, J. Appl. Electrochem. 26 (1998) 135.

    Google Scholar 

  28. B. Poulson, Corros. Sci. 30 (1990) 743.

    Google Scholar 

  29. J.R. Selman and C.W. Tobias, Ad. Chem. Eng. 10 (1978) 211.

    Google Scholar 

  30. I.M.M. El-Nashar, PhD Thesis, Alexandria University. Egypt (1996).

  31. G.P. Power, W.P. Staunton and I.M. Ritchie, Electrochim. Acta 27 (1982) 165.

    Google Scholar 

  32. R. Greef, R. Peat, L.M. Peter, D. Pletcher and J. Robinson, ‘Instrumental Methods in Electrochemistry’, Ellis Horwood, Chichester, England (1985).

    Google Scholar 

  33. N.N. Saxena and N.R. Mandre, Hydrometallurgy 28 (1992) 111.

    Google Scholar 

  34. K. Aramaki, T. Kiuchi, T. Sumiuoshi and H. Nishihara, Corros. Sci. 32 (1991) 593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guiñón, J., García-Antón, J. & Pérez-Herranz, V. The effect of benzotriazole on mass transfer in the corrosion of a copper rotating disk electrode. Journal of Applied Electrochemistry 30, 379–384 (2000). https://doi.org/10.1023/A:1003981509603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003981509603

Navigation