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Abstract. In global hydrological models, groundwater storages and flows are generally simulated by linear reservoir mod-

els. Recently, the first global gradient-based groundwater models were developed in order to improve the representation of

groundwater-surface water interactions, capillary rise, lateral flows and human water use impacts. However, the reliability of

model outputs is limited by a lack of data as well as model assumptions required due to the necessarily coarse spatial resolution.

The impact of data quality is presented by showing the sensitivity of a groundwater model to changes in the only available5

global hydraulic conductivity data-set. To better understand the sensitivity of model output to uncertain spatially distributed

parameter inputs, we present the first application of a global sensitivity method for a global-scale groundwater model using

nearly 2000 steady-state model runs of the global gradient-based groundwater model G3M. By applying the Morris method

in a novel domain decomposition approach that identifies global hydrological response units, spatially distributed parameter

sensitivities are determined for a computationally expensive model. Results indicate that globally simulated hydraulic heads10

are equally sensitive to hydraulic conductivity, groundwater recharge and surface water body elevation, though parameter

sensitivities vary regionally. For large areas of the globe, rivers are simulated to be either losing or gaining, depending on

the parameter combination, indicating a high uncertainty of simulating the direction of flow between the two compartments.

Mountainous and dry regions show a high variance in simulated head due to numerical difficulties of the model, limiting the

reliability of computed sensitivities in these regions. This instability is likely caused by the uncertainty in surface water body15

elevation. We conclude that maps of spatially distributed sensitivities can help to understand complex behaviour of models that

incorporate data with varying spatial uncertainties. The findings support the selection of possible calibration parameters and

help to anticipate challenges for a transient coupling of the model.
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1 Introduction

Global groundwater dynamics have significantly changed due to human withdrawals, and are projected to continue due to

climate change (Taylor et al., 2013). Groundwater withdrawals have led to lowered water tables, decreased base flows, and

groundwater depletion around the globe (Konikow, 2011; Scanlon et al., 2012; Wada et al., 2012; Döll et al., 2014; Wada,

2016). To represent groundwater-surface water body interactions, lateral and vertical flows, and human water use impacts on5

head dynamics, it is necessary to simulate the depth and temporal variation of the groundwater table. Global-scale hydrolog-

ical models have recently moved to include these processes by implementing a gradient-based groundwater model approach

(de Graaf et al., 2015; Reinecke et al., 2018). However, the lack of available input parameter data and the necessary conceptual

assumptions due to the coarse spatial resolution limit the reliability of model output. These substantial uncertainties suggest an

opportunity for diagnostic methods to prioritize efforts in data collection and parameter estimation.10

Sensitivity analysis is a powerful tool to assess how uncertainty in model inputs affects model outcome, and can provide

insights about how the interactions between parameters influence the model results (Saltelli et al., 2008). Sensitivity methods

can be separated into two classes: local and global methods. Local methods compute partial derivatives of the output with

respect to an input factor at a fixed point in the input space. By contrast, global methods explore the full input space, though at

higher computational costs (Pianosi et al., 2016). The large number of model evaluations required can render global methods15

unfeasible for computationally demanding models, though increased computational resources have led to more widespread

application e.g. (Herman et al., 2013b, a; Ghasemizade et al., 2017). For this reason, existing studies of global models either

focus on exploring uncertainties by running their model with a limited set of different inputs for a quasi local sensitivity analysis

(Wada et al., 2014; Müller Schmied et al., 2014, 2016; Koirala et al., 2018) or applying computationally inexpensive methods

based on a limited set of model evaluations (Schumacher et al., 2015). For example, de Graaf et al. (2015, 2017) determined the20

coefficient of variation for head results in a global groundwater model with 1000 model runs evaluating the impact of varying

aquifer thickness, saturated conductivity and groundwater recharge. To the knowledge of the authors, Chaney et al. (2015) is

the only study of a global (land surface) model which carried out an extensive global sensitivity analysis to assess how model

parameter uncertainty affects prediction of hydrologic extremes. An overview of the application of different sensitvity analysis

methods for hydrological models can be found in Song et al. (2015); Pianosi et al. (2016).25

We present an application of the well-established Morris method (Morris, 1991) with the Global Gradient-based Groundwater

Model G3M (Reinecke et al., 2018). The Morris method has been successfully applied to a variety of models, ranging from

hydrology (Zhan et al., 2013) to ecology models (Cariboni et al., 2007). It requires significantly fewer model runs, compared to

other global methods, to provide a meaningful ranking of sensitivity parameters (Herman et al., 2013a) enabling the exploration

of computationally demanding models. One drawback is that the Morris method does not provide the variance decomposition30

obtained with variance-based measures like Sobol (1993).

G3M uses input from, and it is intended to be coupled and integrated into, the global hydrological model WaterGAP Global

Hydrology Model (WGHM) (Döll et al., 2014). This study investigates the sensitivity of steady-state hydraulic heads and
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exchange flows between groundwater and surface water to variations in main model inputs (e.g. groundwater recharge and

other model parameters like the riverbed conductance).

Sensitivities of the model are explored in three steps: (1) To understand the impact of improved input data, in particular

hydraulic conductivity, we investigate the changes in simulated hydraulic head that result from changing the hydraulic conduc-

tivity data from the GLHYMPS 1.0 dataset (Gleeson et al., 2014) to 2.0 (Huscroft et al., 2018). (2) Based on prior experiments5

(de Graaf et al., 2015; Reinecke et al., 2018) eight parameters are selected for a Monte Carlo experiment to investigate sen-

sitivities of simulated hydraulic head and groundwater-surface water interactions. The parameters are sampled with a newly

developed global region-based sampling strategy and build the framework for the (3) Morris analysis. Elementary Effects (EE)

are calculated and their means and variances ranked to determine global spatial distributions of parameter sensitivities and inter-

actions. The derived global maps show, for the first time, the sensitivity and parameter interactions of simulated hydraulic head10

and groundwater-surface water flows in the simulated steady-state global groundwater system to variations in these uncertain

inputs.

2 Methodology and Data

2.1 The model G3M

G3M (Reinecke et al., 2018) is a global groundwater model intended to be coupled with WGHM (Döll et al., 2003, 2012, 2014;15

Müller Schmied et al., 2014) and is based on the Open Source groundwater modelling framework G3M-f1(Reinecke, 2018).

It computes lateral and vertical groundwater flows as well as surface water exchanges for all land areas of the globe except

Antarctica on a resolution of 5′ with two vertical layers with a thickness of 100 m. The evaluation presented in this study

is based on a steady-state variant of the model representing a quasi-natural equilibrium state, not taking into account human

interference. The stand-alone steady-state simulations were performed as initial step to identify the dominant parameters that20

are also likely important for controlling transient groundwater flow.

2.1.1 Groundwater recharge

Groundwater recharge (R) is based on mean annual R computed by WaterGAP 2.2c for the period 1901-2013. Human ground-

water abstraction was not taken into account; not because it is not computed by WaterGAP but rather because there is no

meaningful way to include it into a steady-state model represents a natural equilibrium.25

2.1.2 Hydraulic conductivity

Hydraulic conductivity (K) is derived from GLHYMPS 2.0 (Huscroft et al., 2018) (shown in Fig. 2 (a)). The original data was

gridded to 5′ by using an area-weighted average and used as K of the upper model layer. For the second layer, K of the first

layer is reduced by an e-folding factor f used by Fan et al. (2013) (a calibrated parameter based on terrain slope) assuming that

1Available on globalgroundwatermodel.org
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conductivity decreases exponentially with depth. Conductivity of the lower layer is calculated by multiplying the upper layer

value by exp(−50mf−1)−1 (Fan et al., 2013, Eq. 7).

Currently only two datasets, GLHMYPS 1.0 and 2.0 (Gleeson et al., 2014; Huscroft et al., 2018), are available and are

used by a number of continental and global models (de Graaf et al., 2015; Maxwell et al., 2015; Keune et al., 2016; Reinecke

et al., 2018). GLHMYPS 1.0 (Gleeson et al., 2014) is compiled based on the global lithology map GLiM (Hartmann and5

Moosdorf, 2012) and data from 92 regional groundwater models and derives permeabilities (for the first 100 m vertically)

based on Gleeson et al. (2011), differentiating the sediments into the categories fine-, coarse-grained, mixed, consolidated, and

unconsolidated. Permafrost regions are assigned a K value of 10−13 ms−1 based on Gruber (2012). Areas of deeply weathered

laterite soil (mainly in tropical regions) are mapped as unconsolidated sediments as they dominate K (Gleeson et al., 2014).

The global permeability map was further improved with the development of GLHYMPS 2.0 by Huscroft et al. (2018). A10

two-layer set up was established in GLHYMPS 2.0 with the lower layer matching the original GLHYMPS 1.0. For the upper

layer in GLHYMPS 2.0, a global database of unconsolidated sediments (Börker et al., 2018) was integrated into GLHYMPS 2.0

resulting in overall slightly increased K (Fig. 2 (a)). The thickness of the upper layer was deduced from the depth-to-bedrock

information available from SoilGrid (Hengl et al., 2017). No thickness was assigned to the lower layer.

2.1.3 Surface water body conductance15

G3M is a conceptual model with one river in every 5′ grid cell. The in- and outflows are described similar to MODFLOW as

flows from the cell Q, thus losing and gaining surface water bodies (lakes, wetlands and rivers) are described as

Qswb =




Cswb(hswb−h) h > Bswb

Cswb(hswb−Bswb) h≤Bswb
(1)

where hswb is the head of the surface water body and Bswb the bottom elevation. The conductance Cswb of the surface water

body bed is calculated as20

Cswb =
KLW

hswb−Bswb
(2)

whereK is the hydraulic conductivity, L the length andW the width of the surface water body. For lakes (including reservoirs)

Clak and wetlands Cwet, Cswb is estimated based on K of the aquifer and surface water body area divided by a static thickness

of 5 m. For a steady-state simulation the surface water body data shows the maximum spatial extent of wetlands, an extent

that is seldom reached in particular in case of wetlands in dry areas. To account for that we assume for global (surface water25

bodies recharged by streamflow coming from an upstream 5′ grid cell) wetlands (Cgl.wet) that only eighty percent of their

maximum extent is reached. For gaining rivers, conductance is quantified individually for each grid cell following an approach

proposed by Miguez-Macho et al. (2007). The value of river conductance Criv , according to Miguez-Macho et al. (2007), in a

groundwater flow model needs to be set to such a values that, for steady-state conditions, the river is the sink for all the inflow

to the grid cell (R and inflow from neighbouring cells) that is not transported laterally to neighbouring cells such that30

Criv =
R+Qeqlateral

heq −hriv
h > hriv (3)
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where Qeqlateral
is the lateral flow based on the equilibrium head heq of Fan et al. (2013) and hriv the head of the river (Eswb

= hswb,riv in Table 1). These conductance equations are inherently empirical. Future efforts will investigate using approaches

appropriate for large scale models, such as described by Morel-Seytoux et al. (2017). An extensive description on the chosen

equations and implications can be found in Reinecke et al. (2018).

2.1.4 Surface water body elevation5

The vertical location of surface water bodies has a great impact on model outcome (Reinecke et al., 2018). Their vertical

location hswb is set to the 30th percentile of the 30′′ land surface elevation values of Fan et al. (2013) per 5′ cell, e.g. the

elevation that is exceeded by 70 % of the thousand 30′′ elevation values within one 5′ cell. Bswb is calculated based on

that head elevation with different values for wetlands and lakes (Reinecke et al., 2018, Table 1). For rivers, Bswb is equal to

hriv − 0.349×Qbankfull0.341 (Allen et al., 1994), where Qbankfull is the bankfull river discharge in the 5′ grid cell (Verzano10

et al., 2012).

2.1.5 Ocean boundary

The outer boundary condition in the model is described by the ocean and uses an equation similar to MODFLOW’s general

head boundary condition as flow

Qocean = Coc(hocean−haq) (4)15

where hocean is the elevation of the ocean water table set 0 m worldwide and Coc the conductance of the boundary condition

set to 10−6m2s−1 based on average K and aquifer thickness.

2.2 Sensitivity Analysis

2.2.1 Sensitivity of simulated head to choice in hydraulic conductivity dataset

Parameterization of aquifer properties based on hydrogeological data is an important decision in groundwater modeling. We20

first investigate the effect of switching to a newly available global permeability dataset to explore the sensitivity of simulated

hydraulic head (h) caused by variability in geologic data. The results are then compared to the variability in parameters of the

Monte Carlo experiments.

GLHYMPS 2.0 (Huscroft et al., 2018) provides an update of the only available global permeability map (Gleeson et al.,

2014). To quantify how the new hydraulic conductivity estimates change the simulation outcome of the groundwater model we25

apply a basic sensitivity method.

S =
h2−h1
h1

K2−K1
K1

(5)
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where the sensitivity S of h to a change in K is calculated based on the change in h (h1 is the hydraulic head calculated with

GLHYMPS 1.0 and h2 with GLHYMPS 2.0) and change in K1 and K2 the conductivity based on GLHYMPS 1.0 and 2.0,

respectively.

2.2.2 Sensitivity of head and surface water body flow to choice in parameters

Along withK, additional parameters influence the model outcome (Sect. 2). In this study we apply the method of Morris (Mor-5

ris, 1991) as a screening method to identify which parameters are most important for the two main model outcomes, namely

h and groundwater-surface water interactions (Qswb). The Morris method provides a compromise between accuracy and com-

putational cost in comparison to other Monte Carlo like methods (Campolongo et al., 2007). Each model execution represents

an individually randomized One Factor At a Time (OAT) experiment, where one parameter is changed per simulation. Based

on these model evaluation responses, the Morris method calculates Elementary Effect (EE) d for a given value of X for the ith10

model input.

di(X) =
(
y(X1, . . . ,Xi−1,Xi + ∆,Xi+1, . . . ,Xk)− y(X)

∆

)
(6)

where ∆ is the trajectory step size for the parameter multiplier Xi, X is the vector of model parameters multipliers of size k

and y(X) the model output. The total effect of the ith parameter is computed as the mean of the EEs and is denoted as µ∗ (Cam-

polongo et al., 2007). The standard deviation of EEs (σi) is an aggregated measure of the intensity of the interactions of the ith15

parameter with the other parameters, representing the degree of non-linearity in model response to changes in the ith parameter

(Morris, 1991). The derived metrics µ∗ and σi both are measures of intensity (higher values are more sensitive/interactive) and

do not represent absolute values of sensitivity. Both can only be interpreted meaningfully in comparison with values derived

for other parameters. To achieve that, µ∗ and σi are presented as ranked parameters. µ∗ values for all parameters are ranked

from highest to lowest, and the parameter with the highest value is selected as the most influential parameter. The parameter20

with the second highest value (rank 2) is the second most influential parameter and so on.

Based on previous experiments (de Graaf et al., 2015; Reinecke et al., 2018) we identified eight uncertain model parameters

presented as multipliers in Table 1. Parameter ranges were chosen to ensure that a high percentage of model realizations

converge numerically. For example, the uncertainty of Eswb in the model is higher than the ranged used in this study, but the

sampling range was restricted because the parameter is especially important for model convergence. Furthermore, the chosen25

river conductance approach usesR as input and includes a nonlinear threshold between losing and gaining surface water bodies,

which strongly affects numeric stability. As in any global sensitivity analysis, the choice of parameter ranges involves some

subjectivity that may influence the ranking of sensitive parameters in the results.

2.2.3 Global hydrological response units

Even though the number of model evaluations are comparably less for OAT-based experiments than for All-At-a-Time (Pianosi30

et al., 2016), varying every parameter independently in every spatial grid cell leads to an unfeasible amount of model runs. On

the other hand, the use of global multipliers that vary a parameter uniformly for all computational cells may lead to inconclusive

6
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Table 1. Range of parameter multipliers used in the Morris experiments. Each parameter multiplier is sampled in log space

(log10(Multiplier)) with sampling based on Campolongo et al. (2007) and optimized with Ruano et al. (2012).

Parameter P. Unit Multiplier Range Description

K LT−1 0.1 - 100 Saturated hydraulic conductivity

Eswb L 10−0.001 - 100.001 SWB elevation

Clak L2T−1 0.5 - 2 Conductance of lakebed

Cwet L2T−1 0.5 - 2 Conductance of wetland bed

Cgl.wet L2T−1 0.5 - 2 Conductance of global wetland bed

Criv L2T−1 0.5 - 2 Conductance of riverbed

R LT−1 0.5 - 2 Groundwater recharge

Coc L2T−1 0.1 - 10 Conductance of the ocean boundary

Coc is equal for all ocean cells

results, as the sensitivity for every cell to this change is spread to the whole computational domain. A possible solution would

be to separate the globe into zones with similar geological characteristics based on the GLHYMPS dataset, but this may still

result in an infeasible number of required simulations. Each simulation takes about 30 min to 1 h on a commodity computer

(more if the parameters hinder a fast convergence).

To overcome these limitations, we introduce the use of a Global Hydrological Response Unit (GHRU). Every GHRU rep-5

resents a region of similar characteristics regarding three characteristics: Eswb (Sect. 2.1.4), K (Sect. 2.1.2), and R (Sect.

2.1.1). This does not constitute a zoning approach often used for calibration in traditional regional groundwater modelling,

only a separation into parameter multipliers. All multipliers for a given parameter for all regions are based on the same random

distribution inside a given range of uncertainty for that parameter. Characteristics for each model cell are normalized to [0,1]

and used to create a 3d point space (based on the three characteristics for each model cell). We apply a k-means (Lloyd, 1982)10

clustering algorithm to identify these regions.

K-means clustering partitions n points into k clusters where each point belongs to the cluster with a minimized pairwise

squared distance to the mean in a cluster. Figure 1 (a) shows a map of k-means clustering (6 clusters) categories based on

normalized three-dimensional space of Eswb, K, and R per grid cell.

The number of clusters was determined based on the feasible number of model evaluations. k-means constitutes an unsuper-15

vised machine learning approach that builds the required number of clusters automatically, thus it is necessary afterwards to

examine what main characteristics these clusters represent (shown in Table 2). Characteristics are encoded as relative values

(high (↑), medium (∼), low (↓)) of the three input values based on their mean value per cluster. These characteristics are used

to connect calculated parameter sensitivities to GHRUs when analyzing the results of the experiment.
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Figure 1. Map of k-means clustering categories each representing a GHRU (a). Each color identifies a region where the combination of all

three parameters is similar.

Table 2. Mean values of GHRU characteristics and their summarized description, where ↑ is read as a relatively high value, ∼ as medium,

and ↓ as low; e.g. ↑↑ E indicates a cluster with very high and relatively high (↑) average Eswb. Additionally, the last two columns show the

percentage of cells per GHRU where µ∗ of h and Qswb could be reliably determined (described in Sec. 3.2.6).

% of reliable µ∗

GHRU µ(Eswb)[m] µ(K)[m/day] µ(R)[mm/day] GHRU description h Qswb

1 454 10−4 0.15 ∼ E, ↑ K, ∼ R 9.54 % 6.58 %

2 286 10−6 0.15 ↓ E, ∼ K, ∼ R 12.07 % 14.41 %

3 4107 10−6 0.13 ↑↑ E, ∼ K, ↓ R 0.08 % 4.09 %

4 1355 10−6 0.11 ↑ E, ∼ K, ↓ R 3.17 % 17.19 %

5 303 10−6 1.24 ↓ E, ∼ K, ↑ R 31.62 % 26.37 %

6 194 10−4 1.25 ↓ E, ↑ K, ↑ R 29.00 % 14.36 %

2.2.4 Experiment Configuration

With seven parameters per GHRU plus the ocean boundary, 10 000 base points were sampled in total (Campolongo et al., 2007)

and optimized using Ruano et al. (2012). The experiment resulted in 1848 simulations with an overall runtime of two months

on a machine with 20 computational cores (enabled hyper-threading) and 188 GB RAM. Each simulation required about 8 GB

of RAM and was assigned four computational threads while running the simulations in cohorts of 10 simulations at once. Each5

simulation was an OAT experiment (an extended explanation of OAT and other sensitivity experiment setups and methods

can be found in Pianosi et al. (2016)). Changes in parameters were stacked over all experiments. Thus, an experiment may

have changed R (also affecting Criv for gaining conditions) while containing a Criv multiplier from a previous experiment.

Sampling and analysis was implemented with the Python library SALib (Herman and Usher, 2017). For each experiment,

the model was run until it reached an equilibrium state (steady-state model). All other parameters and convergence criteria10

can be found in Reinecke et al. (2018). If a simulation failed (6 of 1848 did not converge) the missing results were substituted
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randomly from another simulation within the cohort to preserve the required ordering of parameter samples for the used Python

implementation of Morris. This number is low enough that it does not bias the results in any significant way (Branger et al.,

2015).

A converged simulation does not necessarily constitute a valid result for all computed cells. Numeric difficulties based on

the model configuration (due to the selected parameter multipliers) may lead to cells with calculated h that are unreasonable.5

Confidence intervals (95 %) are derived via bootstrapping using 1000 bootstrap resamples, following Archer et al. (1997).

3 Results

3.1 Sensitivity to updated GLHMYPS dataset

Global-scale hydrogeological data is limited. Figure 2 (b) shows the change in K between GLHYMPS 1.0 (Gleeson et al.,

2014) and the upper layer of GLHYMPS 2.0 (Huscroft et al., 2018) where an overall increase can be observed due to the10

change in unconsolidated sediments. Although unconsolidated sediments cover roughly 50 % of the world’s terrestrial surface,

their extent was underestimated in previous lithologic maps by half (Börker et al., 2018). The largest increase of K can be

found between 50 and 70 ◦N because of glacial sediments that were assigned high K values. Different lithologies, e.g. alluvial

terrace sediments and glacial tills, have all been grouped into the hydrolithological category of sand. Areas of decreased

conductivity are e.g. the Great Lakes, south of Hudson Bay, and parts of Somalia. The area around Hudson Bay was assumed15

to consist of unconsolidated sediments in GLHYMPS 1.0 (Gleeson et al., 2014) and was changed to consolidated. In Somalia,

evaporites, which are known for low K, were incorporated from the Global Unconsolidated Sediments Map Database (GUM)

(Börker et al., 2018). Furthermore, GUM provides a detailed mapping of loess and loess-like depositions, which were assigned

lower K values. These regions can be observed to be the only regions with reduced K (Fig. 2 (b)). Overall, the increase in

unconsolidated sediments is probably the main cause for the increased K.20

Due to the change in K, the simulated h changes accordingly (Fig. 2(c)). In areas where the K decreased h increased e.g.

eastern North America. Overall heads decreased, especially in central Russia by up to 10 to 100 m. A slight increase in head

can be observed in areas with no change inK. This can be either due to changes in groundwater flow patterns due to the overall

increase in K or due to numerical noise.

Based on these results, a local sensitivity index was calculated using Eq. (5), shown in Fig. 2 (d). White constitutes areas25

where either the relative change of K was zero or the head of the GLHYMPS 1.0 simulation was zero. Areas with a sensitivity

index below (-)0.1 probably constitute variations that can be accounted to numerical differences in simulation outcome. Overall,

h and K change in the opposite directions (positive values indicate a change into the same direction). An overall increase in

K has led to a overall decrease in h as the higher K values are able to transport more water for a given hydraulic gradient,

especially along coastlines and mountainous areas. Increased sensitivity indexes can be observed at boundaries of large areas30

where K changed, whereas the h changes inside that area are relatively small (e.g. Arabian Peninsula). In regions where an

increase inK leads to a decrease in head, an increase of h at the boundary to other hydrolithological structures can be observed.

Areas with changing indexes next to each other, e.g. in the Sahara, possibly point to a numerically unstable model region with

9
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Figure 2. Impact of hydraulic conductivity datasets GLHYMPS 1.0 and GLHYMPS 2.0. (a) GLHYMPS 2.0 [ms−1], (b) K differ-

ences, expressed as K(GLHYMPS 2.0)/K(GLHYMPS 1.0). Blue indicates higher values in GLHYMPS 2.0. (c) h(GLHYMPS 2.0) minus

h(GLHYMPS 1.0) [m], (d) the sensitivity of h to change in the GLHYMPS dataset based on Eq. (5) (white indicates that no index could be

calculated).

a general sensitivity to parameter changes. GLHYMPS 2.0 represents the best available global data for hydraulic conductivity,

and the results of this initial experiment indicate a significant sensitivity to updating the model with this new dataset.

3.2 Monte Carlo experiments

To assess the variability of model outputs we used the Monte Carlo-like OAT experiments to analyze the outcomes of 1848

model realizations.5

3.2.1 Variability of hydraulic head

The spatial distribution of variability in the main model output h provides insights into model stability and highlights regions

which are most sensitive to parameter changes. Observable differences between simulations can be caused by: (1) the parameter

change of the OAT experiment, (2) the interactive effects due to combinations of parameter changes, (3) numerical noise (slight

variations in outcome due to the nature of the numerical algorithm or floating point errors that cannot be attributed to a specific10

parameter change), and (4) a non-optimal solution of the groundwater equation even if the convergence criterion is met. The

latter error can be observed in regions of the model where a strong non-linear relation may produce solutions that fit the

convergence criterion but should be considered non-valid, e.g., because of a mass-balance that is not in an acceptably precise.

Figure 3 shows the absolute coefficient of variation (ACV) of h per cell over all Monte Carlo experiments. The ACV is

used to make a sound comparison of variance taking into account the mean of the h value per cell (because the mean might15
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Figure 3. Absolute coefficient of variation (σ(h)µ(|h|)−1) [%] of simulated h per cell over all Monte Carlo realizations. Yellow indicates

that h results changed very little, white to gray values indicate a growing difference in model results, and red values indicate a very high

variation of h over all model realizations.

be negative the absolute value is used). Yellow indicates that h changed little (mostly for regions with shallow groundwater),

white to gray values indicate a growing difference in model results, and red values indicate a high variation of h over all model

realizations. The latter areas represent either very low R (Sahara, Australia, South Africa) or a high variance in elevations,

e.g., Himalaya, Andes and the Rocky Mountains. These are expected to have a high sensitivity to parameter changes as the

multiplier of Eswb produces the highest shifts in regions with high elevation that might cause a switch from gaining to losing5

conditions and vice versa (discussed in Sect. 3.2.2). Additionally, a change in R directly influences the conductance term Criv

that might also be changed by a multiplier. These combinations may yield conditions that are exceptionally challenging for the

numerical solver.

Areas with a high variance in results will also produce wide confidence intervals and are highlighted in Fig. A2.

Figure 4 relates the uncertainty in h, due to a change from GLHYMPS 1.0 to 2.0 to the interquartile range of h of all10

Monte Carlo realizations, thus uncertainty in h due to parameter variation. Parameter variation is the dominant cause for h

variability in mountainous regions, whereas the change in geologic data has a dominant impact in northern latitudes and the

upper Amazon. In Australia, central Africa, and northern India the impact of increasing K is almost as high as the variability

caused by the variation of parameters in the Monte Carlo experiments. This suggests that a reduced uncertainty in K in these

regions will improve the model results.15

3.2.2 Variability of losing/gaining surface water bodies

Surface water bodies that provide focused, indirect groundwater recharge to the aquifer system are an important recharge

mechanism to support ecosystems alongside streams (Stonestrom, 2007). Especially in arid regions, they are important for

agriculture and industrial development.

Losing or gaining surface water bodies are determined by h in relation to Eswb. Figure 5 shows for each grid cell the20

percentage of the model runs in which the the surface water bodies in the cell lose water to the groundwater. Regions with

a higher percentage are regions that are in losing conditions independent of the applied parameter changes. Areas with the
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Figure 4. Uncertainty in h caused by variability in geologic structure (dominant in blue to light blue) in relation to uncertainty in h caused by

variability in parameters based on Monte Carlo simulations (dominant in brown to green) calculated as |h1−h2|
IQR(hmc)

where h1/2 is the simulated

head based on GLHMYPS 1.0 and 2.0 and hmc the simulated head of all Monte Carlo experiments.

Figure 5. Percentage of all Monte Carlo realizations that resulted in a losing surface water body in a specific cell.

highest deviation in h (Fig. 3), thus the lowest agreement over all model realizations, are similar to the regions where some

parameter combinations lead to losing surface water bodies, while others lead to gaining surface water bodies (Fig. 5). Overall

arid and mountainous regions show high percentages of Monte Carlo realizations with losing conditions, with dominantly

20-50 % of the realizations resulting in losing surface water bodies. h in these regions falls below Eswb either due to low

recharge or high gradients. Surface water-groundwater interaction in these regions should be more closely investigated to5

improve model performance. The Sahara region stands out with large areas that contain losing surface water bodies in almost

all model realizations. Values close to 100 % are furthermore reached in the Great-Lakes, the Colorado Delta, the Andes, the

Namib Desert, along the coast of Somalia, the Aral lake, lakes and wetlands in northern Siberia, and partially in Australian

wetlands. Wetlands in Australia and the Sahara are likely to be overestimated in size in the context of a steady-state model.
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3.2.3 Parameter sensitivities as determined by the method of Morris

The global-scale sensitivity of h and Qswb is summarized in Table 3 that lists the percentage fractions of all cells for which a

certain parameter has a certain rank regarding sensitivity and parameter interaction.

Overall, Eswb and R are the most important parameters for both model outputs over all ranks, followed by K. Qswb is more

sensitive to R than h, whereas h is more sensitive to Eswb. Criv appears only dominant in the second and third rank for both5

model outputs. This means that for the majority of cells a change in Eswb and R, rather than Criv dominates changes in Qswb

and h. K and R directly influence the calculation of Criv and thus show a higher sensitivity.

The standard deviation of EEs (σi) is an aggregated measure of the intensity of the interactions of the ith parameter with the

other parameters, representing the degree of non-linearity in the model response to changes in the ith parameter Morris (1991).

A high parameter interaction indicates that the total output variance rises due to the interaction of the parameter with other10

parameters.

Eswb shows higher interactions for h than for Qswb. Criv shows a high interaction on the first rank even if it is not the

dominant effect. This interaction is likely due to changes and K and R that directly influence the computation of Criv. Both

model outputs are sensitive to changes inR but show a relatively low degree of interaction for the first rank. A higher percentage

of cells with an increased interaction of R is only visible in the second and third rank.15

Lakes and wetlands show low sensitivity and interaction in relation to total number of cells in Table 3 because they only

exist in a certain percentage of cells. Table 4 shows the percentage fractions relative for cells with more than 25 % coverage of

a lakes, global wetlands, and/or wetlands. The dominant parameter (by percentage) for all cells with respective surface water

body is always Eswb for h (in 79.2 % of the lakes and in (79.9 %) 66.3 % of the (global)wetlands) and R (∼54-77 % of all

cells) for Qswb. For the second rank the conductance of the surface water body Clak,wet,gl.wet dominated h, Criv for Qswb.20

Thus for lakes and wetlands Eswb and R are more relevant to h and Qswb than the conductance of these surface water bodies.

3.2.4 Maps of global sensitivity

To show the spatial distribution of the parameters that affect h and Qswb the most, ranked parameters were plotted for every

cell in Fig. 6. The top of Fig. 6 represents the most sensitive parameters in terms of h (left) and Qswb (right). Areas that should

be judged with caution due to overlapping CIs are shown in Fig. A2.25

Eswb stands out for mountainous regions and regions with low recharge aligned with regions in Fig. 3 and Fig. A3 with

spots of Criv . Eswb is dominant for Qswb e.g. Rocky Mountains, Andes, Hijaz Mountains in Saudi Arabia and the Himalaya.

R stands out in regions in the Tropical Convergence Zone with large R and in northern latitudes for Qswb. K seems to

be equally spatially distributed for h as well as for Qswb. It is most important for h in Australia, the northern Sahara, the

Emirates, and across Europe. There seems to be no correlation between the initial K spatial distribution and a highly ranked K30

sensitivity. Areas with a dominant K are possibly influenced by a high interaction with other model components (K shows a

high interaction Table 3 that is also reflected spatially in Sect. 3.2.5). Eswb stands out in the Sahara where likely overestimated

13

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-10
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 18 February 2019
c© Author(s) 2019. CC BY 4.0 License.



Table 3. Percentage fractions of simulated cells with parameter sensitivity µ∗ and parameter interaction σ per model output h and Qswb,

where the respective output is most sensitive to the listed parameter. For example h is the most sensitive to Eswb (Rank 1) in 57.2% of all

grid cells, while K is the second most important parameter for h in 24.2% of those cells. Fractions are shown for the first three ranks.

% of cells

Rank 1 Rank 2 Rank 3

Para. Output µ∗ σ µ∗ σ µ∗ σ

K
h 24.2 18.8 21.7 12.9 7.1 4.3

Qswb 18.4 15.4 21.1 7.3 8.8 4.7

Eswb

h 57.2 46.3 14.8 19.9 13.4 18.9

Qswb 18.5 14.3 11.2 27.7 36.0 34.4

Clak

h 1.0 0.5 3.9 2.4 4.3 2.5

Qswb 0.5 0.6 2.2 0.9 2 0.9

Cwet

h 1.4 0.5 3.4 1.4 5.3 4.5

Qswb 0.5 0.8 3.6 2.1 4.2 2.8

Cgl.wet

h 0.9 0.9 1.8 10.2 8.4 8.1

Qswb 0.4 0.8 2.3 15.2 9.4 7.8

Criv

h 2.0 28.0 32.8 29.3 28.7 18.1

Qswb 1.4 62.6 47.8 16.2 28.8 10.0

R
h 13.4 4.1 22.7 23.6 33.8 43.2

Qswb 59.8 5.1 11.3 30.5 10.7 39.2

Coc

h 1.3 1.0 0.3 0.2 0.5 0.4

Qswb 0.5 0.4 0.5 0.2 0.2 0.2

Percentage of cells with reliable (overlapping CIs discussed in App. 1 and Sect. 3.2.6)

µ∗: 11.8 % (h) and 13.3 % (Qswb).

wetland extents (Reinecke et al., 2018) have a high impact on h.Qswb seems to be more robust to show the effects in the highly

variable regions and indicates the assumption that Eswb is also mainly responsible for the h variations observed in Sect. 3.2.1.

The second rank (second row in Fig. 6) shows values that are not as important as the top row but dominant over all other

parameters. In the highly variable regionsK and for parts of the HimalayaR are dominant in the second rank. TheCwet appears

as dominant parameter in areas with large wetlands with a bigger impact on Qswb results than on h. Clak is clearly visible in5

parts of Nepal and along the Brahmaputra. In the Tropical Convergence Zone Criv and K dominate for Qswb, whereas results

for h show a mix of Cgl.wet Cwet and Criv .

Zooming in on Europe (Fig. 7) for h, as an example, shows a similar trend to the global picture thatR andK have the highest

impact on h along withEswb.Eswb is dominant in mountainous regions like the Alps and the Apennines as well in regions with

lots of surface water bodies e.g. southern part of Sweden in the area of lake Vättern and Vänern and in the Finnish Lakeland. R10

appears dominant in east Italy in the lagoon of Venice and Marano, the Netherlands, and the wetlands in southwestern France.
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Table 4. Percentage fractions of the most frequent parameter for rank 1 and 2 of all cells with with more than 25 % coverage of a lakes,

global wetland, or wetland.

µ ∗ (h) µ ∗ (Qswb)

% R. 1=Eswb % R. 2=Clak,wet,gl.wet % R. 1=R % R. 2=Criv

Lakes 79.2 64.6 54.2 38.8

Wetlands 66.3 47.3 77.2 46.9

Gl. Wetlands 79.9 56.4 66.3 131.7

1 Criv=31.7 %, Cgl.wet=40.6 %.

Percentage of second most frequent parameter not shown. Percentage in relation to cells with lakes, global wetland,

or wetland > 25 %. Percentage-wise R. 1(µ ∗ (h)) was always followed byR except for global wetlands were the

second most frequent R. 1 was Cgl.wet. R. 1(µ ∗ (Qswb)) was followed percentage-wise byEswb except for

local wetlands withK, R. 2(µ ∗ (Qswb)) by Clak,wet,gl.wet except for global wetlands with Criv .

Figure 6. Ranking of parameter sensitivity of h (left) and Qswb (right). Parameters are ranked from top to bottom by µ∗ values.

Almost invisible in the global picture is Coc, a dominant parameter for most cells that have the ocean as boundary condition

(only observable for h). Predominantly Criv followsEswb as second most important parameter. Only visible in the second rank

are the wetlands e.g. in west Scotland.
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Figure 7. Zoom in of Europe of Fig. 6. Ranking of parameter sensitivity of h (left: rank 1, right: rank 2).

3.2.5 Maps of global parameter interaction

Similar to the spatial parameter sensitivities Fig. 8 shows the parameter interactions for h and Qswb. Parallel to Fig. 6, the first

row of Fig. 8 represents the most interactive parameters in terms of h change (left) and Qswb (right). The highest interaction

with other parameters can be observed for Eswb for regions with high h variability similar to Fig. 6. Criv shows a high

interaction in regions sensitive to R (compare Fig. 6) and is more visible for Qswb.5

K regions in the second rank are similar to where K already showed a high sensitivity for h (compare Fig. 6). In the

Himalaya R and Criv show a large spatial pattern. For Qswb, Cgl.wet is clearly visible where Criv was most interactive before.

3.2.6 Sensitivity per GHRU

Average sensitivities and parameter interactions for each of the six GHRUs are shown in Fig. 9 (a). A dominant average per10

GHRU does not imply a rank 1 in each cell but rather provides an indication of its average importance per GHRU. Each GHRU

is described by the notation in Table 2. The shown average sensitivities and interactions are normalized to [0,1] because the

calculated µ∗ and σ present no absolute measure of sensitivity. Mean values of µ∗ and σ that are very close to zero are not

shown in Fig. 9.

The values shown in Fig. 9 (a) should be judged with caution as they also include the regions Fig. A2 shown to be unreliable.15

To judge the reliability of the outcomes per GHRU Table 2 shows the percentage of reliable results for h and Qswb for each

GHRU, where reliable results exclude over 80% of all sensitivity values because their CI overlapped (compare Fig. A2 and

explanation Fig. A1). Figure 9 (b) shows only cells with reliable results, based on their confidence intervals, resulting in 11.8 %

of all grid cells for h and 13.3 % for Qswb. GHRUs in high and very high elevations show low reliability concerning h results

as expected (compare Fig. 3). Qswb appears as more robust in these regions.20
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Figure 8. Ranking of parameters interaction (σ of EE is an indicator for parameter interaction) based on h (left) andQswb (right). Parameters

are ranked from top to bottom by Σ values.

Figure 9 (a) shows a similar picture to the two global maps (Fig. 6, 8). All GHRUs show a linear correlation of sensitivity

and degree of interaction. The GHRU with average elevation, average recharge, and high K (GHRU 1) shows higher average

response in Qswb than h. h as most sensitive to Criv , and less sensitive to the other parameters. Qswb is clearly most sensitive

to K and Cgl.wet and shows a high interaction in this GHRU. Lower-lying regions with average K and R (GHRU 2) show

high sensitivity of h only to Eswb with a high interaction while Qswb is affected in decreasing order by Cgl.wet and K. Results5

for h sensitivity in GHRU 3, with very high elevations, average K and low R, should be judged with caution because only a

very low fraction is based on results with non-overlapping CIs (Table 2). Compared to other GHRUs, 3 shows rather clustered

sensitivities and parameter interactions. h is most sensitive to Eswb and R and Qswb to Clak, K, and Cwet. GHRU 4, which

differs from GHRU 3 by its high but not very high land surface elevation, shows Eswb, K, and R as clearly most dominant and

interactive parameter for Qswb, followed by Cwet. Similar Qswb is most sensitive to Eswb and K. In low-lying and rather flat10

regions with high groundwater recharge (GHRU 5), sensitivities of h are close to zero except for K possibly because changes

in h are to small in flat regions (compare Fig. 3) due to small h gradients. Qswb is most sensitive to Eswb and Cgl.wet. GHRU

6 is relatively small and like GHRU 5 only occurs in the tropical zone (Fig. 1 (a)). In this GHRU, which differs from GHRU 5

only by K being high instead of average, the dominant parameters of Qswb are similar to other GHRUs where Eswb is clearly

the most dominant followed by R and K. h shows a response to wetlands but again like in 5 a very low response to Eswb.15
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Taking into account only the reliable regions changes the perception in Fig. 9 (b). GHRU 1 shows rather similar sensitivities

and parameter interactions as compared to other GHRUs. h is most sensitive to Eswb, and only somewhat less sensitive to Criv

and Cwet. Qswb is clearly most sensitive to Criv and shows a high interaction in this GHRU. GHRU 2 shows high sensitivity

of h only to Eswb with a high interaction while Qswb is equally affected by K, Eswb and R. Results for h sensitivity in GHRU

3 are not very representative for the whole GHRU as only a very small fraction of cells shows reliable results (Table 2). Like5

in GHRU 2, Qswb is equally affected by by K, Eswb and R. GHRU 4 shows Eswb as clearly most dominant and interactive

parameter for h, followed by K and Cwet. For GHRU 5, sensitivities of h could not be determined reliably possibly because

changes in h are to small in flat regions (compare Fig. 3) due to small h gradients. Qswb is most sensitive to R (as rivers are

gaining rivers that need to drain groundwater recharge) followed by K. In GHRU 6 the dominant parameters of Qswb are the

same as for GHRU 5 (except for Eswb) while h is most sensitive to Clak.10

4 Discussion

This study presents a novel spatially distributed sensitivity analysis for a high-resolution global gradient-based groundwater

model encompassing 4.3 million grid cells. While these maps are challenging to interpret, they yield new ways of understanding

model behavior and can help to focus efforts in collecting observation data for specific regions for future calibration. However,

the large number of grid cells with either zero sensitivity values or unreliable results limit the relevance and applicability of15

the study results. The study suggests that the highly non-linear and conceptual approach to the surface water body conductance

(in particular the sudden change of conductance between gaining and losing rivers) needs to be revised as it may affect the

stability of transient model results. Additionally the results suggest that elevation of the water table of surface water bodies is

a promising calibration parameter alongside with hydraulic conductivity.

The presented results need to be considered against the backdrop of the high h variability of the Monte Carlo experiments20

(Sect. 3.2.1). Some of these simulations cannot be considered as a valid result for a h distribution. This is due to multiple model

challenges: (1) the evaluated model is a numerical model and thus behaves differently for different parameterizations, (2) the

equations used for rivers present a non-linear model component (switch between equations for gaining and losing conditions

as well as relation to K and R), (3) the convergence criterion for the steady-state solution is solely based on a vector norm of

residuals and maximum h change between iterations and do not contain an automated check for a reasonable mass balance. On25

the other hand, it is challenging to include a validation mechanism in the presented analysis to alleviate these problems while

maintaining a reasonable model runtime (as a stricter convergence criterion will most likely increase the number of necessary

iterations) and/or number of necessary model runs. It is questionable whether results based on different convergence criteria

can be compared. This would necessitate including the numeric stability in the sensitivity analysis as well.

Around 30 % of all µ∗ values had a confidence interval that was larger than 10 % of the µ∗ value. This suggests that30

even more model runs are required and that large extents of the model experienced numerically unstable results as the spatial

distribution of head variance and large confidence intervals overlap.

18

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-10
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 18 February 2019
c© Author(s) 2019. CC BY 4.0 License.



Figure 9. Normalized average sensitivity and parameter interaction per GHRU for h andQswb (a). If a parameter is not present the mean sen-

sitivity for that GHRU was close to zero. Does not include ocean parameter sensitivity. Mean characteristics, their symbols for each GHRU,

and the reliability of the sensitivity measure (only µ∗ not σ) are shown in Table 2. (b) Only reliable results (after removing overlapping CI).

The selection of parameter ranges can influence the results of a sensitivity analysis significantly (Pianosi et al., 2016). Even

parameters that are suspected of not being sensitive can show highly nonlinear behavior in certain parts of the parameter space

that are only activated when one expands the ranges of the parameters. The presented ranges in this study do not explore the full

assumed uncertainty range. Specifically, the small range of Eswb is likely influencing the outcome of the parameter rankings.

The range was chosen to allow a reasonable number of simulations to converge as the range of Eswb directly influences the5

numerical stability of the model. The presented results, however, do show that the model output is highly sensitive to changes
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in Eswb in most areas of the globe. The response in mountainous regions can be attributed to applying Eswb as a multiplier,

which has a higher impact in regions where the initial water body elevation is high. On the other hand, this is accounting for

the fact that the uncertainty of Eswb is largest in regions with highly variable topography per 5’ grid cell.

The only previous sensitivity analysis of a global gradient-based groundwater model to out knowledge was done by de Graaf

et al. (2015). Based on varying K, aquifer thickness, and R, the coefficient of variation of the steady-state hydraulic head5

was computed (de Graaf et al., 2015, Fig. 5). From that analysis it was determined that K has the highest impact and aquifer

thickness the lowest. It is not clear how the coefficient of variation determined these outcomes. The relatively low impact of

aquifer thickness was observed also by Reinecke et al. (2018). Therefore, this parameter was not included in this study. Both

de Graaf et al. (2015) and this study show a high h variance in parts of Australia and the Sahara (de Graaf et al., 2015, Fig. 5)

possibly due to the low initial R. Variations in the mountainous regions, on the other hand, are not reflected in de Graaf et al.10

(2015) as their analysis did not vary Eswb.

Besides the large h variance, which is likely the main cause for the low percentage of reliable cells, the confidence intervals

of the sensitivity indices in this experiment suggest that additional simulations are necessary to determine more reliable results.

Additionally, the small parameter ranges, required for stable model runs, influenced the overall outcome and might be a reason

for cells with inconclusive results.15

For cells with lakes and wetlands, Eswb dominates over the variations in conductance for h (Table 4), confirming the impor-

tance in determining the surface water body elevation. For Qswb, on the other hand, R is most influential in these cells even

though it does not affect the conductance equation for these surface water bodies. Apparently, available recharge is driving the

interaction more than it influences changes in head. In regions with high recharge (GHRU 5) Qswb was more robust to param-

eter changes than h. This is possibly due to the generally lower response in Qswb to changes in Eswb, which can be explained20

by the constant flow for losing surface water bodies (incl. rivers) as soon as h drops below Eswb. Thus changes is Eswb do not

affect Qswb afterwards (as long as the surface water body remains in losing conditions). Both model outcomes show a high

sensitivity to R while the interaction of R is only visible at the 3rd rank suggesting that if R changes other parameter changes

do not influence the model response further.

Separating the complex global domain into a selected number of GHRUs enables a sensitivity analysis in accordance with25

computational constraints (e.g. maximum number of core hours). It alleviates the drawbacks of global-scale multipliers while

keeping a reasonable number of total simulations. The presented decomposition based on three parameters Eswb, K, and R

was guided by the high sensitivity of model output to these parameters. Other factors like lithology and surface water body

characteristics should be investigated as additional characteristics for GHRUs.

5 Conclusions30

For the first time, spatially distributed sensitivities of the global steady-state distribution of hydraulic head and flows be-

tween the groundwater and the surface water bodies were calculated and presented. We found the Morris sensitivity analysis

method can yield insights for computationally challenging (concerning computation time and numerical difficulties) models
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with reasonable computational demand. This study applied a novel approach for domain decomposition into GHRUs. Apply-

ing parameter multipliers simultaneously to all grid cells within each of the six GHRUs allowed a more meaningful sensitivity

calculation, than it would be possible if the parameters would have varied simultaneously in all grid cells, while maintaining a

feasible the number of simulations.

Based on only a small fraction of grid cells for which parameters could be ranked reliably according to their importance for5

simulated model output, steady-state hydraulic heads (h) were found to be comparably affected by hydraulic conductivity (K),

groundwater recharge (R) and the elevation of the water table of surface water bodies (Eswb). Rankings for individual grid

cells varies, but globally none of the three dominates with respect to h. The simulated flows between groundwater and surface

water bodies (Qswb) are clearly most sensitive to R. This is due to the model parameterization of river conductance that is

computed as a function of R, assuming under steady-state conditions, groundwater discharge to rivers should tend to increase10

with increasing R (Eq. (3)). The results indicate that changes in R between timesteps for a fully coupled transient model could

pose a challenge to the model convergence and that the equations might need to be reconsidered for a fully coupled model. In

general the uncertainty due to the parameterization of groundwater-surface water exchange flows (Eswb andCriv,gl.wet,wet,lak)

needs to be further investigated as they have a high impact on h distribution and Qswb.

In high mountainous regions (Rocky Mountains, Andes, Ethiopian Highlands, Arabian Peninsula, Himalaya) and regions15

with low recharge (Sahara, southern Africa) the computed h showed an unreasonably high variance due to the numeric instabil-

ity of the simulations in these areas. In case of high elevations and thus large variations in Eswb or in case of low groundwater

recharge, it is not possible to solve steady-state groundwater flow equations with arbitrary parameter combinations and a con-

stant convergence parameter. Qswb was found to somewhat be more robust than h in these regions. These results suggest that

the parameterization of Eswb needs to be reconsidered and is a likely parameter for future calibration.20

The lack of reliable data at the global scale, in particular hydraulic conductivity data with high horizontal and vertical

resolution, hinders the development of global groundwater models. A simple sensitivity analysis on the impact of small changes

to an existing global hydraulic conductivity dataset (GLHYMPS 1.0 (Gleeson et al., 2014) to 2.0 (Huscroft et al., 2018)) showed

that knowledge about the distribution of K is pivotal for the simulation of h as even slight changes in K may change model

results by up to 100 m.25

The presented study results refer to the uncoupled steady-state groundwater model G3M. As G3M is currently being inte-

grated into the global hydrological model WaterGAP, future work will extend this sensitivity analysis to fully coupled transient

simulations.

1 Appendix

Results of the method of Morris need to be contemplated in a ranking based scheme that relies on metrics that summarize the30

calculated EEs. Figure A1 shows the conceptual issues that are entailed with this ranking approach. The absolute mean (µ∗) of

all EEs of parameter 1 (P1) might be bigger than µ∗ of P2 but as their CIs are overlapping a clear ranking is not possible. On the

other hand it is evident that P1 and P2 are clearly more sensitive than P3. Figure A2 shows regions where the applied sampling
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Figure A1. Illustration of derivation of presented metrics.

was sufficient (CIs where smaller than 15% of the calculated µ∗ of the first rank) and regions where more simulations, or a

more sophisticated approach to ensure numerical stability, is required.
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Figure A2. Confidence interval (95) in relation to the µ∗ for rank 1 of h and Qswb. Yellow regions indicate a sufficient sampling size.

References

Allen, P. M., Arnold, J. C., and Byars, B. W.: Downstream channel geometry for use in planning-level models, JAWRA Journal of the

American Water Resources Association, 30, 663–671, https://doi.org/10.1111/j.1752-1688.1994.tb03321.x, 1994.

Archer, G., Saltelli, A., and Sobol, I.: Sensitivity measures, ANOVA-like techniques and the use of bootstrap, Journal of Statistical Compu-

tation and Simulation, 58, 99–120, 1997.5

Börker, J., Hartmann, J., Amann, T., and Romero-Mujalli, G.: Global Unconsolidated Sediments Map Database v1.0 (shapefile and grid-

ded to 0.5° spatial resolution), https://doi.org/10.1594/PANGAEA.884822, supplement to: Börker, J et al. (accepted): Terrestrial Sedi-

ments of the Earth: Development of a Global Unconsolidated Sediments Map Database (GUM). Geochemistry, Geophysics, Geosystems,

https://doi.org/10.1002/2017GC007273, 2018.

Branger, F., Giraudet, L.-G., Guivarch, C., and Quirion, P.: Global sensitivity analysis of an energy–economy model of the residential building10

sector, Environmental Modelling & Software, 70, 45 – 54, https://doi.org/https://doi.org/10.1016/j.envsoft.2015.03.021, 2015.

Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design for sensitivity analysis of large models, Environmental modelling

& software, 22, 1509–1518, https://doi.org/10.1016/j.envsoft.2006.10.004, 2007.

Cariboni, J., Gatelli, D., Liska, R., and Saltelli, A.: The role of sensitivity analysis in ecological modelling, Ecological Modelling, 203, 167 –

182, https://doi.org/10.1016/j.ecolmodel.2005.10.045, special Issue on Ecological Informatics: Biologically-Inspired Machine Learning,15

2007.

23

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-10
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 18 February 2019
c© Author(s) 2019. CC BY 4.0 License.



Chaney, N., Herman, J., Reed, P., and Wood, E.: Flood and drought hydrologic monitoring: the role of model parameter uncertainty, Hydrol-

ogy and Earth System Sciences, 19, 3239–3251, https://doi.org/10.5194/hess-19-3239-2015, 2015.

de Graaf, I. E., Sutanudjaja, E., Van Beek, L., and Bierkens, M.: A high-resolution global-scale groundwater model, Hydrology and Earth

System Sciences, 19, 823–837, https://doi.org/10.5194/hess-19-823-2015, 2015.

de Graaf, I. E., van Beek, R. L., Gleeson, T., Moosdorf, N., Schmitz, O., Sutanudjaja, E. H., and Bierkens, M. F.: A global-scale two-5

layer transient groundwater model: Development and application to groundwater depletion, Advances in Water Resources, 102, 53–67,

https://doi.org/10.1016/j.advwatres.2017.01.011, 2017.

Döll, P., Kaspar, F., and Lehner, B.: A global hydrological model for deriving water availability indicators: model tuning and validation,

Journal of Hydrology, 270, 105–134, https://doi.org/10.1016/S0022-1694(02)00283-4, 2003.

Döll, P., Hoffmann-Dobrev, H., Portmann, F. T., Siebert, S., Eicker, A., Rodell, M., Strassberg, G., and Scanlon, B.: Impact of wa-10

ter withdrawals from groundwater and surface water on continental water storage variations, Journal of Geodynamics, 59, 143–156,

https://doi.org/10.1016/j.jog.2011.05.001, 2012.

Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., and Eicker, A.: Global-scale assessment of groundwater depletion and related

groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites, Water Re-

sources Research, 50, 5698–5720, https://doi.org/10.1002/2014WR015595, 2014.15

Fan, Y., Li, H., and Miguez-Macho, G.: Global patterns of groundwater table depth, Science, 339, 940–943,

https://doi.org/10.1126/science.1229881, 2013.

Ghasemizade, M., Baroni, G., Abbaspour, K., and Schirmer, M.: Combined analysis of time-varying sensitivity and identifiabil-

ity indices to diagnose the response of a complex environmental model, Environmental Modelling & Software, 88, 22 – 34,

https://doi.org/10.1016/j.envsoft.2016.10.011, 2017.20

Gleeson, T., Smith, L., Moosdorf, N., Hartmann, J., Dürr, H. H., Manning, A. H., van Beek, L. P. H., and Jellinek, A. M.: Mapping perme-

ability over the surface of the Earth, Geophysical Research Letters, 38, https://doi.org/10.1029/2010GL045565, 2011.

Gleeson, T., Moosdorf, N., Hartmann, J., and Van Beek, L.: A glimpse beneath earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS)

of permeability and porosity, Geophysical Research Letters, 41, 3891–3898, https://doi.org/10.1002/2014GL059856, 2014.

Gruber, S.: Derivation and analysis of a high-resolution estimate of global permafrost zonation, The Cryosphere, 6, 221–233,25

https://doi.org/10.5194/tc-6-221-2012, 2012.

Hartmann, J. and Moosdorf, N.: Global Lithological Map Database v1.0 (gridded to 0.5° spatial resolution),

https://doi.org/10.1594/PANGAEA.788537, 2012.

Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N.,
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