NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The geological record of life 3500 Ma ago: Coping with the rigors of a young earth during late accretionThin cherty sedimentary layers within the volcanic portions of the 3,500 to 3,300 Ma-old Onverwacht and Fig Tree Groups, Barberton Greenstone belt, South Africa, and Warrawoona Group, eastern Pilbara Block, Western Australia, contain an abundant record of early Archean life. Five principal types of organic and probably biogenic remains and or structures can be identifed: stromatolites, stromatolite detritus, carbonaceous laminite or flat stromalite, carbonaceous detrital particles, and microfossils. Early Archean stromatolites were reported from both the Barberton and eastern Pilbara greenstone belts. Systematic studies are lacking, but two main morphological types of stromatolites appear to be represented by these occurrences. Morphology of the stromalites is described. Preserved early Archean stromatolites and carbonaceous matter appear to reflect communities of photosynthetic cyanobacteria inhabiting shallow, probably marine environments developed over the surfaces of low-relief, rapidly subsiding, simatic volcanic platforms. The overall environmental and tectonic conditions were those that probably prevailed at Earth's surface since the simatic crust and oceans formed sometime before 3,800 Ma. Recent studies also suggest that these early Archean sequences contain layers of debris formed by large-body impacts on early Earth. If so, then these early bacterial communities had developed strategies for coping with the disruptive effects of possibly globe-encircling high-temperature impact vapor clouds, dust blankets, and impact-generated tsunamis. It is probable that these early Archean biogenic materials represent organic communities that evolved long before the beginning of the preserved geological record and were well adapted to the rigors of life on a young, volcanically active Earth during late bombardment. These conditions may have had parallels on Mars during its early evolution.
Document ID
19890016988
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Lowe, Donald R.
(Louisiana State Univ. Baton Rouge, LA, United States)
Date Acquired
September 6, 2013
Publication Date
March 1, 1989
Publication Information
Publication: NASA, Ames Research Center, Exobiology and Future Mars Missions
Subject Category
Lunar And Planetary Exploration
Accession Number
89N26359
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available