Skip to main content
Log in

Non-enzymatic glucose sensor based on molecularly imprinted polymer: a theoretical, strategy fabrication and application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A comprehensive theoretical screening of functional monomers, structural optimization, interaction energies (ΔE), and Gibbs free energy changes (ΔG) calculations of the preparation of molecularly imprinted polymer (MIP) were performed using density functional theory (DFT) method. Based on the thermodynamic and interaction energy calculations, it is found that acrylamide (AAm) as a functional monomer candidate has the potential to interact with glucose more efficiently for the preparation of MIP. In this work, on the basis of the theoretical calculations for the functional monomer selection in the MIP preparation, an electrochemical impedance sensor based on porous Ni foam modified with MIP (MIP@Ni) was developed for the glucose detection. The morphology and the electrochemical characteristics of the fabricated sensor were characterized by scanning electron microscopy, X-ray powder diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. The linear range and limit of detection were in the range of 0.8–4.0 mM and 0.45 mM with a signal to noise ratio of three in alkaline medium. Common interfering species such as ascorbic acid (AA), D-fructose, and 4-acetaminophenol (AP) were demonstrated have less effects on the glucose determination. The MIP@Ni foam exhibited better selectivity, which has a potential application in the advanced non-enzymatic glucose monitoring device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun XC, Stagon S, Huang HC, Chen J, Lei Y (2014) Functionalized aligned silver nanorod arrays for glucose sensing through surface enhanced Raman scattering. RSC Adv 4(45):23382–23388

    Article  CAS  Google Scholar 

  2. Zhao Y, Bo XJ, Guo LP (2015) Highly exposed copper oxide supported on three-dimensional porous reduced graphene oxide for non-enzymatic detection of glucose. Electrochim Acta 176:1272–1279

    Article  CAS  Google Scholar 

  3. Kim DM, Moon JM, Lee WC, Yoon JH, Choi CS, Shim YB (2017) A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer. Biosens Bioelectron 91:276–283

    Article  CAS  PubMed  Google Scholar 

  4. Xu JJ, Huang PY, Qin Y, Jiang DC, Chen HY (2016) Analysis of intracellular glucose at single cells using electrochemiluminescence imaging. Anal Chem 88(9):4609–4612

    Article  CAS  PubMed  Google Scholar 

  5. Xiao Y, Xu LR, Qi LW (2017) Electrochemiluminescence bipolar electrode array for the multiplexed detection of glucose, lactate, choline based on a versatile enzymatic approach. Talanta 165:577–583

    Article  CAS  PubMed  Google Scholar 

  6. Wang YZ, Zhong H, Li XR, Liu GQ, Yang K, Ma M, Zhang LL, Yin JZ, Cheng ZP, Wang JK (2016) Nonenzymatic electrochemiluminescence glucose sensor based on quenching effect on luminol using attapulgite–TiO2. Sensors Actuators B 230:449–455

    Article  CAS  Google Scholar 

  7. Goodarzi M, Saeys W (2016) Selection of the most informative near infrared spectroscopy waveb,s for continuous glucose monitoring in human serum. Talanta 146:155–165

    Article  CAS  PubMed  Google Scholar 

  8. Xue JT, Ye LM, Liu YF, Li CY, Chen H (2017) Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR) spectroscopy. Spectrochim Acta A 179:250–254

    Article  CAS  Google Scholar 

  9. Gu X, Wang H, Schultz ZD, Camden JP (2016) Sensing glucose in urine, serum, hydrogen peroxide in living cells by use of a novel boronate nanoprobe based on surface-enhanced Raman spectroscopy. Anal Chem 88(14):7191–7197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharma B, Bugga P, Madison LR, Henry AI, Blaber MG, Greeneltch NG, Chiang N, Mrksich M, Schatz GC, Van Duyne RP (2016) Bisboronic acids for selective, physiologically relevant direct glucose sensing with surface-enhanced Raman spectroscopy. J Am Chem Soc 138(42):13952–13959

    Article  CAS  PubMed  Google Scholar 

  11. Chen QL, Fu Y, Zhang WH, Ye SB, Zhang H, Xie FY, Gong L, Wei ZX, Jin HY, Chen J (2017) Highly sensitive detection of glucose: a quantitative approach employing nanorods assembled plasmonic substrate. Talanta 165:516–521

    Article  CAS  PubMed  Google Scholar 

  12. Kang ZP, Jiao KL, Yu C, Dong J, Peng RY, Hu ZQ, Jiao SQ (2017) Direct electrochemistry, bioelectrocatalysis of glucose oxidase in CS/CNC film and its application in glucose biosensing and biofuel cells. RSC Adv 7(8):4572–4579

    Article  CAS  Google Scholar 

  13. Rama EC, Costa-García A, Fernández-Abedul MT (2017) Pin-based electrochemical glucose sensor with multiplexing possibilities. Biosens Bioelectron 88:34–40

    Article  CAS  PubMed  Google Scholar 

  14. Gong CC, Shen Y, Song YH, Wang L (2017) On-off ratiometric electrochemical biosensor for accurate detection of glucose. Electrochim Acta 235:488–494

    Article  CAS  Google Scholar 

  15. Lu WB, Qin XY, Asiri AM, Al-youbi AO, Sun XP (2013) Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection. Analyst 138(2):417–420

    Article  CAS  PubMed  Google Scholar 

  16. Niu XH, Lan MB, Zhao HL, Chen C (2013) Highly sensitive, selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal Chem 85(7):3561–3569

    Article  CAS  PubMed  Google Scholar 

  17. Fang C, Yi CL, Wang Y, Cao YH, Liu XY (2009) Electrochemical sensor based on molecular imprinting by photo-sensitive polymers. Biosens Bioelectron 24(10):3164–3316

    Article  CAS  PubMed  Google Scholar 

  18. Guo CY, Wang YM, Zhao YQ, Xu CL (2013) Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity. Anal Methods 5(7):1644–1647

    Article  CAS  Google Scholar 

  19. Nie HG, Yao Z, Zhou XM, Yang Z, Huang SM (2011) Nonenzymatic electrochemical detection of glucose using well-distributed nickel nanoparticles on straight multi-walled carbon nanotubes. Biosens Bioelectron 30(1):28–34

    Article  CAS  PubMed  Google Scholar 

  20. Mu Y, Jia DL, He YY, Miao YQ, Wu HL (2011) Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 26(6):2948–2952

    Article  CAS  PubMed  Google Scholar 

  21. Wang XW, Dong XC, Wen YQ, Li CM, Xiong QH, Chen P (2012) A graphene-cobalt oxide based needle electrode for non-enzymatic glucose detection in micro-droplets. Chem Commun 48(52):6490–6492

    Article  CAS  Google Scholar 

  22. Chen T, Liu DL, Lu WB, Wang KY, Du G, Asiri AM, Sun XP (2016) Three-dimensional Ni2P nanoarray: an efficient catalyst electrode for sensitive and selective nonenzymatic glucose sensing with high specificity. Anal Methods 88:7885–7889

    CAS  Google Scholar 

  23. Ensafi AA, Ahmadi N, Rezaei B (2017) Nickel nanoparticles supported on porous silicon flour, application as a non-enzymatic electrochemical glucose sensor. Sensors Actuators B 239:807–815

    Article  CAS  Google Scholar 

  24. Liu ZG, Guo YJ, Dong C (2015) A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone–graphene nanosheets–nickel nanoparticles–chitosan nanocomposite. Talanta 137:87–93

    Article  CAS  PubMed  Google Scholar 

  25. Ghiaci M, Tghizadeh M, Ensafi AA, Zandi-Atashbar N, Rezaei B (2016) Silver nanoparticles decorated anchored type lig,s as new electrochemical sensors for glucose detection. J Taiwan Inst Chem Eng 63:39–45

    Article  CAS  Google Scholar 

  26. Ensafi AA, Zandi-Atashbar N, Rezaei B, Ghiaci M, Taghizadeh M (2016) Silver nanoparticles decorated carboxylate functionalized SiO2, new nanocomposites for non-enzymatic detection of glucose and hydrogen peroxide. Electrochim Acta 214:208–216

    Article  CAS  Google Scholar 

  27. Ensafi AA, Zandi-Atashbar N, Rezaei B, Ghiaci M, Chermahini ME, Moshiri P (2016) Non-enzymatic glucose electrochemical sensor based on silver nanoparticle decorated organic functionalized multiwall carbon nanotubes. RSC Adv 6(65):60926–60932

    Article  CAS  Google Scholar 

  28. Ensafi AA, Ahmadi Z, Jafari-Asl M, Rezaei B (2015) Graphene nanosheets functionalized with Nile blue as a stable support for the oxidation of glucose and reduction of oxygen based on redox replacement of Pd-nanoparticles via nickel oxide. Electrochim Acta 173:619–629

    Article  CAS  Google Scholar 

  29. Ensafi AA, Abarghoui MM, Rezaei B (2014) A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite. Electrochim Acta 123:219–226

    Article  CAS  Google Scholar 

  30. Ensafi AA, Jafari-Asl M, Dorostkar N, Ghiaci M, Martínez-Huerta MV, Fierro JLG (2013) The fabrication, characterization of cu-nanoparticle immobilization on a hybrid chitosan derivative-carbon support as a novel electrochemical sensor: application for the sensitive enzymeless oxidation of glucose , reduction of hydrogen peroxide. J Mater Chem B 2:706–717

    Article  Google Scholar 

  31. Lu LM, Zhang L, Qu FL, Lu HX, Zhang XB, Wu ZS, Huan SY, Wang QA, Shen GL, Yu RQ (2009) A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. Biosens Bioelectron 25(1):218–223

    Article  CAS  PubMed  Google Scholar 

  32. Zhang EP, Ni YH (2016) 3D reticulate CoxNi3−xS2 nanostructure on nickel foam as a new type of electroactive material for high-performance supercapacitors. RSC Adv 6(108):106465–106472

    Article  CAS  Google Scholar 

  33. Yu Y, Chen CH, Shui JL, Xie S (2005) Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries. Angew Chem Int Ed 44(43):7085–7089

    Article  CAS  Google Scholar 

  34. Hussain A, Tso CY, Chao CYH (2016) Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite. Energy 115:209–218

    Article  CAS  Google Scholar 

  35. Apodaca DC, Pernites RB, Ponnapati R, Mundo FRD, Advincula RC (2011) Electropolymerized molecularly imprinted polymer film: EIS sensing of bisphenol A. Macromolecules 44(17):6669–6682

    Article  CAS  Google Scholar 

  36. Hemmati K, Masoumi A, Ghaemy M (2016) Tragacanth gum-based nanogel as a superparamagnetic molecularly imprinted polymer for quercetin recognition and controlled release. Carbohydr Polym 136:630–640

    Article  CAS  PubMed  Google Scholar 

  37. Yang YQ, Yi CL, Luo J, Liu R, Liu JK, Jiang JQ, Liu XY (2011) Glucose sensors based on electrodeposition of molecularly imprinted polymeric micelles: a novel strategy for MIP sensors. Biosens Bioelectron 26(5):2607–2612

    Article  CAS  PubMed  Google Scholar 

  38. Xing XR, Liu S, Yu JH, Lian WJ, Huang JD (2012) Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated grapheme/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine. Biosens Bioelectron 31(1):277–283

    Article  CAS  PubMed  Google Scholar 

  39. Isarankura-Na-Ayudhya C, Nantasenamat C, Buraparuangsang P, Piacham T, Ye L, Bülow L, Prachayasittikul V (2008) Computational insights on sulfonamide imprinted polymers. Molecules 13(12):3077–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yañez F, Chianella I, Piletsky SA, Concheiro A, Alvarez-Lorenzo C (2010) Computational modeling, molecular imprinting for the development of acrylic polymers with high affinity for bile salts. Anal Chim Acta 659(1-2):178–185

    Article  CAS  PubMed  Google Scholar 

  41. Azimi A, Javanbakht M (2014) Computational prediction and experimental selectivity coefficients for hydroxyzine, cetirizine molecularly imprinted polymer based potentiometric sensors. Anal Chim Acta 812:184–190

    Article  CAS  PubMed  Google Scholar 

  42. Nicholls IA, Chavan S, Golker K, Karlsson BCG, Olsson GD, Rosengren AM, Suriyanarayanan S, Wiklander JG (2015) Theoretical and computational strategies for the study of the molecular imprinting process and polymer performance. Adv Biochem Eng Biotechnol 150:25–50

    CAS  PubMed  Google Scholar 

  43. Cowen T, Karim K, Piletsky S (2016) Computational approaches in the design of synthetic receptors—a review. Anal Chim Acta 936:62–74

    Article  CAS  PubMed  Google Scholar 

  44. Ghani NTA, El Nashar RM, Abdel-Haleem FM, Madbouly A (2016) Computational design, synthesis, application of a new selective molecularly imprinted polymer for electrochemical detection. Electroanalysis 28(7):1530–1538

    Article  CAS  Google Scholar 

  45. Farid MM, Goudini L, Piri F, Zamani A, Saadati F (2016) Molecular imprinting method for fabricating novel glucose sensor: polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles. Food Chem 194:61–67

    Article  CAS  PubMed  Google Scholar 

  46. Zhao W, Zhang RL, Xu S, Cai J, Zhu XJ, Zhu Y, Wei W, Liu XY, Luo J (2018) Molecularly imprinted polymeric nanoparticles decorated with Au NPs for highly sensitive and selective glucose detection. Biosens Bioelectron 100:497–503

    Article  CAS  PubMed  Google Scholar 

  47. Li X, Niu XH, Wu HY, Meng SC, Zhang WC, Pan JM, Qiu FX (2017) Impedimetric enzyme-free detection of glucose via a computation-designed molecularly imprinted electrochemical sensor fabricated on porous Ni foam. Electroanalysis 29(5):1243–1251

    Article  CAS  Google Scholar 

  48. Fonseca MC, Nascimento CS, Borges KB (2016) Theoretical investigation on functional monomer and solvent selection for molecular imprinting of tramadol. Chem Phys Lett 645:174–179

    Article  CAS  Google Scholar 

  49. Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys 105:11024–11103

    Article  CAS  Google Scholar 

  50. Boys SF, Bernardi F (1970) Calculation of small molecular interactions by differences of separate total energies-some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  51. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102(11):1995–2001

    Article  CAS  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Norm J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox D J (2009) Gaussian 09, Revision A.02, Gaussian, Inc, Wallingford

  53. Needham P (2003) Hydrogen bonding: homing in on a tricky chemical concept. Stud Hist Phil Sci 44:51–65

    Article  Google Scholar 

  54. Madikizela LM, Mdluli PS, Chimuka L (2016) Experimental and theoretical study of molecular interactions between 2-vinyl pyridine and acidic pharmaceuticals used as multi-template molecules in molecularly imprinted polymer. React Funct Polym 103:33–43

    Article  CAS  Google Scholar 

  55. Wu HY, Cui CC, Song QJ, Wang HJ, Wu AP (2009) Theoretical study of the peroxidation of chlorophenols in gas phase and aqueous solutions. J Mol Struct THEOCHEM 916(1-3):86–90

    Article  CAS  Google Scholar 

  56. Wu LQ, Sun BW, Li YZ, Chang WB (2003) Study properties of molecular imprinting polymer using a computational approach. Analyst 128(7):944–949

    Article  CAS  Google Scholar 

  57. Rao HB, Chen M, Ge HW, Lu ZW, Liu X, Zou P, Wang XX, He H, Zeng XY, Wang YY (2017) A novel electrochemical sensor based on Au@PANI composites film modified glassy carbon electrode binding molecular imprinting technique for the determination of melamine. Biosens Bioelectron 87:1029–1035

    Article  CAS  PubMed  Google Scholar 

  58. Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15(11):913–947

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (31601549 and U1507115), the Natural Science of Jiangsu Education (16KJB150045), the China Postdoctoral Science Foundation funded project (2016 M601747), the Qing Lan Project of the Higher Education Institutions of Jiangsu Province, the Start-Up Research Fund from Jiangsu University of Technology, and the Training Program of Jiangsu Excellent Talents in Higher Vocational College (2017GRFX066). All calculations were supported by High-Performance Computing Platform of Jiangsu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxian Qiu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Tian, Q., Zheng, W. et al. Non-enzymatic glucose sensor based on molecularly imprinted polymer: a theoretical, strategy fabrication and application. J Solid State Electrochem 23, 1379–1388 (2019). https://doi.org/10.1007/s10008-019-04237-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04237-1

Keywords

Navigation