Skip to main content
Log in

Dreidimensionale Temperaturverteilung in großen Wasserkraftgeneratoren: effiziente Simulation und Optimierung

Three-dimensional temperature distribution in large hydro-generators: efficient simulation and optimization

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Zusammenfassung

In großen luftgekühlten Hydrogeneratoren in Synchronmaschinen-Ausführung werden die anfallenden Verluste über einen erzwungenen Kühlluftstrom gekühlt. Zur Vermeidung hoher Ventilationsverluste, die durch Luftreibung und den entsprechenden Aufwand für die Druckerzeugung entstehen, werden die Kühlluftströme derart dimensioniert, dass diese die Verlustquellen – also vor allem die Aktivteile – forciert kühlen. Dazu muss der Generator als Ganzes betrachtet und optimiert werden. In dieser Arbeit wird ein Berechnungsverfahren zur Ermittlung des dreidimensionalen Temperaturfelds in Wasserkraftgeneratoren hoher Leistung vorgestellt und anhand von Berechnungs- und Messergebnissen evaluiert.

Abstract

In large air-cooled hydro-generators, designed as salient-pole synchronous machines, a forced cooling air-flow evacuates power losses. In order to optimize ventilation losses caused by air-friction and fan air-pressure generation, the cooling-air distribution is set up in such a way that loss sources – mainly the active parts of the generator – are intensely cooled. For this purpose, the generator as a whole must be considered and optimized. This paper presents a calculation method for determining the three-dimensional temperature field in large hydro-generators and validates calculation results with measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1.
Abb. 2.
Abb. 3.
Abb. 4.
Abb. 5.
Abb. 6.
Abb. 7.
Abb. 8.
Abb. 9.
Abb. 10.
Abb. 11.
Abb. 12.
Abb. 13.

Literatur

  1. Baehr, H. D., Stephan, K. (2010): Wärme- und Stoffübertragung. Berlin: Springer.

    Book  Google Scholar 

  2. Binder, A. (2009): Lecture book: large generators and high power drives. Darmstadt: Darmstadt University of Technology.

    Google Scholar 

  3. Boglietti, A., Cavagnino, A., Staton, D., Shanel, M., Mueller, M., Mejuto, C. (2009): Evolution and modern approaches for thermal analysis of electrical machines. IEEE Trans. Ind. Electron., 56(3), 871–882.

    Article  Google Scholar 

  4. Contreras, J., Traxler-Samek, G., Schofer, S., Spring, S. (2015): Validation of the CFD calculation of a complete hydro-generator by measurements. In Proc. of the hydro 2015 conference.

    Google Scholar 

  5. Depraz, R., Zickermann, R., Schwery, A., Avellan, F. (2006): CFD validation and air cooling design methodology for large hydro generator. In Proc. 17th international conference on electrical machines ICEM.

    Google Scholar 

  6. Farnleitner, E., Kastner, G. (2010): Moderne Methoden der Ventilationsauslegung von Pumpspeichergeneratoren. E&I, Elektrotech. Inf.tech., 127, 24–29.

    Article  Google Scholar 

  7. Hestenes, M., Stiefel, E. (1952): Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand., 49(6), 409–436.

    Article  MathSciNet  Google Scholar 

  8. Idelchik, I. E. (1994): Handbook of hydraulic resistance. Boca Raton: CRC Press.

    Google Scholar 

  9. Kakac, S., Shah, R. K., Aung, W. (1987): Handbook of single-phase convective heat transfer. New York: Wiley.

    Google Scholar 

  10. Klomberg, S. (2015): Heat transfer model for end winding cooling of hydro generators by computational fluid dynamics analysis. PhD thesis, Graz University of Technology.

  11. Schrittwieser, M., Biro, O., Farnleitner, E., Kastner, G. (2014): Validation of numerical approaches for simulating the heat transfer in stator ducts with measurements. IEEE Trans. Magn., 50(2), 261–264.

    Article  Google Scholar 

  12. Schrittwieser, M., Biro, O., Farnleitner, E., Kastner, G. (2015): Analysis of temperature distribution in the stator of large synchronous machines considering heat conduction and heat convection. IEEE Trans. Mag., 51(3).

    Article  Google Scholar 

  13. Traxler-Samek, G. (2003): Zusatzverluste im Stirnraum von Hydrogeneratoren mit Roebelstabwicklung. PhD thesis, Vienna University of Technology.

  14. Traxler-Samek, G. (2014): Analytical and numerical design methods for the electromechanical calculation of hydro-generators. Habilitationsschrift, Technische Universität Darmstadt.

  15. Traxler-Samek, G., Ardley, G. (2009): Iron losses in salient-pole synchronous machines considering unidirectional and elliptic magnetization. In Proc. 8th international symposium on advanced electromechanical motion systems, ELECTROMOTION.

    Google Scholar 

  16. Traxler-Samek, G., Schwery, A., Zickermann, R., Ramirez, C. (2004): Optimised calculation of losses in large hydrogenerators using statistical methods. In Proc. 16th international conference on electrical machines, ICEM.

    Google Scholar 

  17. Traxler-Samek, G., Zickermann, R., Schwery, A. (2008): Advanced calculation of temperature rises in large air-cooled hydro-generators. In Proc. 18th international conference on electrical machines, ICEM.

    Google Scholar 

  18. Traxler-Samek, G., Zickermann, R., Schwery, A. (2010): Cooling airflow, losses, and temperature in large air-cooled synchronous machines. IEEE Trans. Ind. Electron., 57(1), 172–180.

    Article  Google Scholar 

  19. Traxler-Samek, G., Schwery A, J. B. (2011): Kühlung von lufgekühlten Wasserkraftgeneratoren bei verschiedenen Betriebszuständen. E&I, Elektrotech. Inf.tech., 128 (5).

  20. Weili, L., Yu, Z., Yuhong, C. (2011): Calculation and analysis of heat transfer coefficients and temperature fields of air-cooled large hydro-generator rotor excitation windings. IEEE Trans. Eng. Conv., 26 (3).

    Article  Google Scholar 

  21. Weili, L., Dan, L., Jinyang, L., Xiaochen, Z. (2017): Influence of rotor radial ventilation ducts number on temperature distribution of rotor excitation winding and fluid flow state between two poles of a fully air-cooled hydro-generator. IEEE Trans. Indust. Electron., 64 (5).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Traxler-Samek.

Additional information

Publisher’s Note

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traxler-Samek, G., Langmayr, D. Dreidimensionale Temperaturverteilung in großen Wasserkraftgeneratoren: effiziente Simulation und Optimierung. Elektrotech. Inftech. 136, 216–223 (2019). https://doi.org/10.1007/s00502-019-0723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-019-0723-y

Schlüsselwörter

Keywords

Navigation