Skip to main content

Advertisement

Log in

Tolerance Mechanisms to Copper and Zinc Excess in Rhizophora mucronata Lam. Seedlings Involve Cell Wall Sequestration and Limited Translocation

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Rhizophora mucronata is a common mangrove growing in habitats subjected to heavy metal (HM) contamination. Understanding their physiological responses to copper (Cu) and zinc (Zn) excess and underlying tolerance mechanisms is crucial to assess impacts of metal pollution on mangrove community. Seedlings were treated with Cu or Zn (0, 50 or 100 mg per plant) by means of a single addition. At day 3 and 7, Cu and Zn accumulation, photosynthetic efficiency, superoxide dismutase and peroxidase activity, non-protein thiols, reactive oxygen species and lipid peroxidation in roots and leaves were measured. R. mucronata restricted Cu and Zn translocation, thus accumulated HM mainly in roots while kept the leaves unaffected. However, high root HM did not induce oxidative stress nor anti-oxidative defense as HM were largely deposited in cell wall. We concluded that HM tolerance strategies of R. mucronata seedlings are exclusion and restriction of translocation to the vital photosynthetic tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alongi DM, Clough BF, Dixon P et al (2003) Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees 17:51–60

    Article  CAS  Google Scholar 

  • Alongi DM, Clough BF, Robertson AI (2005) Nutrient-use efficiency in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Aquat Bot 82:121–131

    Article  Google Scholar 

  • Bothe H, Słomka A (2017) Divergent biology of facultative heavy metal plants. J Plant Physiol 219:45–61

    Article  CAS  Google Scholar 

  • Cheng H, Chen DT, Tam NF et al (2012) Interactions among Fe2+, S2–, and Zn2+ tolerance, root anatomy, and radial oxygen loss in mangrove plants. J Exp Bot 63:2619–2630

    Article  CAS  Google Scholar 

  • Colzi I, Doumett S, Bubba MD et al (2011) On the role of the cell wall in the phenomenon of copper tolerance in Silene paradoxa L. Environ Exp Bot 72:77–83

    Article  CAS  Google Scholar 

  • Devi SR, Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Sci 138:157–165

    Article  CAS  Google Scholar 

  • Elavarthi S, Martin B (2010) Spectrophotometric assays for antioxidant enzymes in plants. In: Sunkar R. (ed) Plant stress tolerance. Methods in molecular biology (methods and protocols), vol 639. Humana, New York

    Google Scholar 

  • Fritioff A, Kautsky L, Greger M (2005) Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ Pollut 133:265–274

    Article  CAS  Google Scholar 

  • Gonzalez-Mendoza D, Moreno AQ, Zapata-Perez O (2007) Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquat Toxicol 83:306–314

    Article  CAS  Google Scholar 

  • Hoppe-Speer SC, Adams JB, Rajkaran A et al (2011) The response of the red mangrove Rhizophora mucronata Lam. to salinity and inundation in South Africa. Aquat Bot 95:71–76

    Article  Google Scholar 

  • Jambunathan N (2010) Determination and detection of reactiveoxygen species (ROS), lipid peroxidation, and electrolyteleakage in plants. In: Sunkar R (ed) Plant stress tolerance, methods in molecular biology. Humana, New York, pp 291–297

    Chapter  Google Scholar 

  • Kaewtubtim P, Meeinkuirt W, Seepom S et al (2016) Heavy metal phytoremediation potential of plant species in a mangrove ecosystem in Pattani Bay, Thailand. Appl Ecol Environ Res 14:367–382

    Article  Google Scholar 

  • Kamaruzzaman BY, Shuhada NT, Akbar B et al (2011) Spatial concentrations of lead and copper in bottom sediments of Langkawi coastal area, Malaysia. Res J Environ Sci 5:179–186

    Article  CAS  Google Scholar 

  • Kodikara KAS, Jayatiss LP, Huxham M et al (2018) The effects of salinity on growth and survival of mangrove seedlings changes with age. Acta Bot Brasilica 32:37–46

    Article  Google Scholar 

  • Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51

    Article  CAS  Google Scholar 

  • Küpper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8:269–285

    Article  Google Scholar 

  • Lang I, Wernitznig S (2011) Sequestration at the cell wall and plasma membrane facilitates zinc tolerance in the moss Pohlia drummondii. Environ Exp Bot 74:186–193

    Article  CAS  Google Scholar 

  • Li Y, Zhou C, Huang M et al (2016) Lead tolerance mechanism in Conyza canadensis: subcellular distribution, ultrastructure, antioxidative defense system, and phytochelatins. J Plant Res 129:251–262

    Article  CAS  Google Scholar 

  • Lorestani B, Yousefi N, Cheraghi M et al (2013) Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site. Environ Monit Assess 185:10217–10223

    Article  CAS  Google Scholar 

  • MacFarlane GR, Burchett MD (2000) Cellular distribution of copper, lead and zinc in the grey mangrove. Avicennia marina (Forsk.) Vierh. Aquat Bot 68:45–59

    Article  CAS  Google Scholar 

  • Macfarlane GR, Burchett MD (2001) Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove. Avicennia marina (Forsk.) Vierh. Mar Pollut Bull 42:233–240

    Article  CAS  Google Scholar 

  • Macfarlane GR, Burchett MD (2002) Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Mar Environ Res 54:65–84

    Article  CAS  Google Scholar 

  • Macfarlane GR, Koller CE, Blomberg SP (2007) Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. Chemosphere 69:1454–1464

    Article  CAS  Google Scholar 

  • Monnet F, Vaillant N, Vernay P et al (2001) Relationship between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress. J Plant Physiol 158:1137–1144

    Article  CAS  Google Scholar 

  • Nanda R, Agrawal V (2016) Elucidation of zinc and copper induced oxidative stress, DNA damage and activation of defence system during seed germination in Cassia angustifolia Vahl. Environ Exp Bot 125:31–41

    Article  CAS  Google Scholar 

  • Phandee S, Buapet P (2018) Photosynthetic and antioxidant responses of the tropical intertidal seagrasses Halophila ovalis and Thalassia hemprichii to moderate and high irradiances. Bot Mar 61:247–256

    Article  CAS  Google Scholar 

  • Printz B, Lutts S, Hausman JF et al (2016) Copper trafficking in plants and its implication on cell wall dynamics. Front Plant Sci 7:1–16

    Article  Google Scholar 

  • Pumijumnong N (2014) Mangrove forests in Thailand. In: Faridah-Hanum I, Latiff A, Hakeem K, Ozturk M (eds) Mangrove ecosystems of Asia. Springer, New York

    Google Scholar 

  • Pumijumnong N, Danpradit S (2016) Heavy metal accumulation in sediments and mangrove forest stems from Surat Thani Provice, Thailand. Malays For 79:212–228

    Google Scholar 

  • Rahman MM, Chongling Y, Rahman MDM et al (2012) Effects of copper on growth, accumulation, antioxidant activity and malondialdehyde content in young seedlings of the mangrove species Kandelia candel (L.). Plant Biosyst 146:47–51

    Article  Google Scholar 

  • Rattanama K, Pattaratumrong MS, Towatana P, Wongkamhaeng K (2016) Three new records of gammarid amphipod in Songkhla Lake, Thailand. Trop Life Sci Res 27:53–61

    Article  Google Scholar 

  • Sandilyan S, Kathiresan K (2014) Decline of mangroves—a threat of heavy metal poisoning in Asia. Ocean Coast Manag 102:161–168

    Article  Google Scholar 

  • Shahid M, Pourrut B, Dumat C et al (2014) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol 232:1–44

    CAS  Google Scholar 

  • Silva CAR, Lacerda LD, Rezende CE (1990) Metals reservoir in a red mangrove forest. Biotropica 22:339–345

    Article  Google Scholar 

  • Singh S, Parihar P, Singh R et al (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    Google Scholar 

  • Souza IC, Rocha LD, Morozesk M et al (2015) Changes in bioaccumulation and translocation patterns between root and leafs of Avicennia schaueriana as adaptive response to different levels of metals in mangrove system. Mar Pollut Bull 94:176–184

    Article  CAS  Google Scholar 

  • Stevens DP, McLaughlin MJ, Heinrich T (2003) Determining toxicity of lead and zinc runoff in soils: salinity effects on metal partitioning and on phytotoxicity. Environ Toxicol Chem 22:3017–3024

    Article  CAS  Google Scholar 

  • Thomas G, Andresen E, Mattusch J et al (2016) Deficiency and toxicity of nanomolar copper in low irradiance—a physiological and metalloproteomic study in the aquatic plant Ceratophyllum demersum. Aquat Toxicol 177:226–236

    Article  CAS  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36:409–430

    Article  CAS  Google Scholar 

  • Yruela I, Pueyo JJ, Alonso PJ et al (1996) Photoinhibition of photosystem II from higher plants. J Biol Chem 271:27408–27415

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Thailand Research Fund (TRF Grant No. MRG6080076). We also thank Asst. Prof. Dr. Siriporn Pradit for technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pimchanok Buapet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

128_2019_2589_MOESM1_ESM.tif

Supplementary material 1—Fig. S1 Conceptual diagram showing mechanisms of heavy metal tolerance in Rhizophora mucronata (TIF 180 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torasa, S., Boonyarat, P., Phongdara, A. et al. Tolerance Mechanisms to Copper and Zinc Excess in Rhizophora mucronata Lam. Seedlings Involve Cell Wall Sequestration and Limited Translocation. Bull Environ Contam Toxicol 102, 573–580 (2019). https://doi.org/10.1007/s00128-019-02589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-019-02589-y

Keywords

Navigation