Skip to main content
Log in

Mechanism of Mechanically Induced Nanocrystallization of Amorphous FINEMET Ribbons During Milling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Melt-spun FINEMET amorphous ribbons were milled for different periods up to 65 minutes. The effect of milling time on the structure has been investigated using X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and transmission electron microscopy. The results showed that partial crystallization of the amorphous powder occurs during milling. Transmission electron microscope observations confirmed that an α-Fe(Si) phase with a mean crystallite size of ~9 nm nucleates inhomogenously on the plastically deformed regions. Differential scanning calorimetry analysis indicated that under high-energy vibrational milling, the Fe23B6 phase becomes unstable, and Fe2B and Fe3B phases could form instead in the amorphous matrix. Gibbs free energy calculations explained the increase of crystalline phases’ nucleation rates under the high pressures resulting from the mechanical milling impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Gheiratmand, H.R. Madaah Hosseini, P. Davami, F. Ostadhossein, M. Song, and M. Gjoka: Nanoscale, 2013, vol. 5, pp. 7520–27.

    Article  Google Scholar 

  2. S. Alleg, S. Kartout, M. Ibrir, S. Azzaza, N.E. Fenineche, and J.J. Suñol: J. Phys. Chem. Solids, 2013, vol. 74, pp. 550–57.

    Article  Google Scholar 

  3. C. Smith, S. Katakam, S. Nag, Y.R. Zhang, J.Y. Law, R. Ramanujan, N. Dahotre, and R. Banerjee: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2998–3009.

    Article  Google Scholar 

  4. L.L. Meng, X.Y. Li, J. Pang, L. Wang, B. An, L.J. Yin, K.K. Song, and W.M. Wang: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5122–33.

    Article  Google Scholar 

  5. D. L. Zhang: Prog. Mater Sci., 2004, vol. 49, pp. 537–60.

    Article  Google Scholar 

  6. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  Google Scholar 

  7. B. Movahedi, M.H. Enayati, and C.C. Wong: Mater. Sci. Eng. B, 2010, vol. 172, pp. 50–4.

    Article  Google Scholar 

  8. Y.J. Liu, I.T. H. Chang, and P. Bowen: Mater. Sci. Eng. A, 2001, vol. 304–306, pp. 389–93.

    Article  Google Scholar 

  9. S. Azzaza, S. Alleg, and J. Suñol: Adv. Mater. Phys. Chem., 2013, vol. 3, pp. 90–100.

    Article  Google Scholar 

  10. V.A. Peña Rodríguez, J. Quispe Marcatoma, J.M. Agüero Andrade, E.M. Baggio-Saitovitch, A. Caytueros Villegas, and E.C. Passamani: Mater. Sci. Eng. A, 2006, vol. 429, pp. 261–65.

    Article  Google Scholar 

  11. J.J. Ipus, J.S. Blázquez, V. Franco, and A. Conde: Intermetallics, 2008, vol. 16, pp. 1073–82.

    Article  Google Scholar 

  12. L.B. Hong, C. Bansal, and B. Fultz: Nanostruct. Mater., 1994, vol. 4, pp. 949–56.

    Article  Google Scholar 

  13. J.H. Kim and C.H. Park: J. Alloys Compd., 2014, vol. 585, pp. 69–74.

    Article  Google Scholar 

  14. D.R. Maurice and T.H. Courtney: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 289–303.

    Article  Google Scholar 

  15. F.Q. Guo and K. Lu: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1123–31.

    Article  Google Scholar 

  16. J.Y. Yang, J.S. Wu, T.J. Zhang, and K. Cui: J. Alloys Compd., 1998, vol. 265, pp. 269–72.

    Article  Google Scholar 

  17. M.E. McHenry, M.A. Willard, and D.E. Laughlin: Prog. Mater. Sci., 1999, vol. 44, pp. 291–433.

    Article  Google Scholar 

  18. J.S. Blázquez, S. Lozano-Pérez, and A. Conde: Mater. Lett., 2000, vol. 45, pp. 246–50.

    Article  Google Scholar 

  19. T. Miki, K. Tsujita, S. Ban-Ya, and M. Hino: CALPHAD, 2006, vol. 30, pp. 449–54.

    Article  Google Scholar 

  20. M. Imafuku, S. Sato, H. Koshiba, E. Matsubara, and A. Inoue: Scripta Mater., 2001, vol. 44, pp. 2369–72.

    Article  Google Scholar 

  21. J. Fornell, S. González, E. Rossinyol, S. Suriñach, M.D. Baró, D.V. Louzguine-Luzgin, J.H. Perepezko, J. Sort, and A. Inoue: Acta Mater., 2010, vol. 58, pp. 6256–66.

    Article  Google Scholar 

  22. Y.R. Zhang and R.V. Ramanujan: J. Alloys Compd., 2005, vol. 403, pp. 197–205.

    Article  Google Scholar 

  23. P. Henits, Á. Révész, L.K. Varga, and Z. Kovács: Intermetallics, 2011, vol. 19, pp. 267–75.

    Article  Google Scholar 

  24. Y.X. Zhuang, J.Z. Jiang, T.J. Zhou, H. Rasmussen, L. Gerward, M. Mezouar, W. Crichton, and A. Inoue: Appl. Phys. Lett., 2000, vol. 77, pp. 4133–35.

    Article  Google Scholar 

  25. F. Ye and K. Lu: Acta Mater., 1998, vol. 46, pp. 5965–71.

    Article  Google Scholar 

  26. X.Y. Zhang, F.X. Zhang, J.W. Zhang, W.Yu, M. Zhang, J.H. Zhao, R.P. Liu, Y.F. Xu, and W.K. Wang: J. Appl. Phys., 1998, vol. 84, pp. 1918–23.

    Article  Google Scholar 

  27. Y.Y. Sun, M. Song, X.Z. Liao, and Y.H. He: J. Alloys Compd., 2011, vol. 509, pp. 6603–08.

    Article  Google Scholar 

  28. Y.Y. Sun, M. Song, X.Z. Liao, G. Sha, and Y.H. He: Mater. Sci. Eng. A, 2012, vol. 543, pp. 145–51.

    Article  Google Scholar 

  29. D. Basset, P. Matteazzi, and F. Miani: Mater. Sci. Eng. A, 1994, vol. 174, pp. 71–74.

    Article  Google Scholar 

  30. D. Basset, P. Matteazzi, and F. Miani: Mater. Sci. Eng. A, 1993, vol. 168, pp. 149–52.

    Article  Google Scholar 

  31. R.M. Davis, B. McDermott, and C.C. Koch: Metall. Mater. Trans. A, 1988, vol. 19A, pp. 2867–74.

    Article  Google Scholar 

  32. D. Maurice and T.H. Courtney: Metall. Mater. Trans. A, 1994, vol. 25, pp. 147–58.

    Article  Google Scholar 

  33. X.J. Gu, S.J. Poon, G.J. Shiflet, and M. Widom: Acta Mater., 2008, vol. 56, pp. 88–94.

    Article  Google Scholar 

  34. S.W. Lee, M.Y. Huh, S.W. Chae, and J.C. Lee: Scripta Mater., 2006, vol. 54, pp. 1439–44.

    Article  Google Scholar 

  35. M. Palumbo, C. Papandrea, and L. Battezzati: J. Mater. Sci., 2005, vol. 40, pp. 2431–35.

    Article  Google Scholar 

  36. K. Lu: Phys. Rev. B, 1995, vol. 51, pp. 18–27.

    Article  Google Scholar 

  37. D. Turnbull: J. Appl. Phys., 1950, vol. 21, pp. 1022–28.

    Article  Google Scholar 

  38. H.A. Shivaee and H.R. M. Hosseini: Thermochim. Acta, 2009, vol. 494, pp. 80–5.

    Article  Google Scholar 

  39. F. Spaepen: Acta Metall., 1977, vol. 25, pp. 407–15.

    Article  Google Scholar 

  40. L. Yao: Phd Thesis, In Institut für Angewandte Materialforschung F-I1, Berlin, 2011.

  41. A.H. Taghvaei, M. Stoica, K.G. Prashanth, and J. Eckert: Acta Mater., 2013, vol. 61, pp. 6609–21.

    Article  Google Scholar 

  42. H. Chen, Y. He, G.J. Shiflet, and S.J. Poon: Nature, 1994, vol. 367, pp. 541–43.

    Article  Google Scholar 

  43. R.E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed., PWS, Boston, 1994, pp. 495–501.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr E. Devlin of the Institute of nanoscience and nanotechnology, NCSR Demokritos, Athens, Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gheiratmand.

Additional information

Manuscript submitted June 2, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheiratmand, T., Madaah Hosseini, H.R., Davami, P. et al. Mechanism of Mechanically Induced Nanocrystallization of Amorphous FINEMET Ribbons During Milling. Metall Mater Trans A 46, 2718–2725 (2015). https://doi.org/10.1007/s11661-015-2848-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2848-x

Keywords

Navigation