Skip to main content
Log in

Combined PCSK9 and APOE Polymorphisms are Genetic Risk Factors Associated with Elevated Plasma Lipid Levels in a Thai Population

  • Original Article
  • Published:
Lipids

Abstract

Proprotein convertase subtilisin/kexin type 9 (PCSK9) and apolipoprotein E (ApoE) play a key role in the regulation of lipid metabolism. We aimed to investigate the effects of PCSK9 (R46L, I474V, and E670G) and APOE polymorphisms on lipid levels in a Southern Thai population. A total of 495 participants (307 urban, 188 rural) were recruited for the study. Anthropometric and biochemical variables were evaluated. PCSK9 and APOE polymorphisms were analyzed using PCR–RFLP. The 46L urban male carriers had significantly higher diastolic blood pressure (DBP) and fasting blood sugar compared with non-carriers. In contrast, the 46L urban female carriers had significantly lower total cholesterol (TC) and LDL-C levels compared with non-carriers. The 474V rural female carriers had significantly lower HDL-C levels than non-carriers. The 670G urban female carriers showed significantly higher TC and LDL-C levels compared with non-carriers. APOE4 carriers had increased TC and LDL-C levels relative to APOE3 carriers in the urban males. APOE2 carriers had decreased TC and/or LDL-C levels compared with APOE3 carriers in urban males and females. A significant trend of increased TC and LDL-C levels was observed in non-APOE4-PCSK9 670EE carriers to APOE4-PCSK9 670EG carriers in urban subjects. In summary, R46L, I474V, and E670G may be genetic risk factors for cardiovascular disease (CVD) in urban males, rural females, and urban females, respectively. In contrast, R46L had a favorable lipid profiles that may protect against CVD in urban females. The combination of PCSK9 E670G and APOE polymorphisms may represent an independent factor for the determination of lipid levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APOE:

Apolipoprotein E

BMI:

Body mass index

CARDIA study:

Coronary artery risk development in young adults study

CVD:

Cardiovascular disease

DBP:

Diastolic blood pressure

DHS:

Dallas heart study

FBS:

Fasting blood sugar

GOF:

Gain-of-function

HDL-C:

High density lipoprotein cholesterol

LCAS:

Lipoprotein coronary atherosclerosis study

LDL-C:

Low density lipoprotein cholesterol

LDLR:

Low density lipoprotein receptor

LOF:

Loss-of-function

PCR-RFLP:

Polymerase chain reaction and restriction fragment length polymorphism

PCSK9:

Proprotein convertase subtilisin/kexin type 9

PLIC study:

Progression of lesions in the intima of the carotid study

PROSPER:

Prospective study of pravastatin in the elderly at risk

TC:

Total cholesterol

TG:

Triglyceride

UK:

United Kingdom

UV:

Ultraviolet

WC:

Waist circumference

References

  1. Park SW, Moon YA, Horton JD (2004) Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J Biol Chem 279(48):50630–50638

    Article  CAS  PubMed  Google Scholar 

  2. Benjannet S, Rhainds D, Essalmani R, Mayne J, Wickham L, Jin W, Asselin MC, Hamelin J, Varret M, Allard D, Trillard M, Abifadel M, Tebon A, Attie AD, Rader DJ, Boileau C, Brissette L, Chrétien M, Prat A, Seidah NG (2004) NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem 279(47):48865–48875

    Article  CAS  PubMed  Google Scholar 

  3. Peterson AS, Fong LG, Young SG (2008) PCSK9 function and physiology. J Lipid Res 49(6):1152–1156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Horton JD, Cohen JC, Hobbs HH (2009) PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res 50(Suppl):S172–S177

    PubMed Central  PubMed  Google Scholar 

  5. Zhang DW, Lagace TA, Garuti R, Zhao Z, McDonald M, Horton JD, Cohen JC, Hobbs HH (2007) Binding of PCSK9 to EGFA repeat of LDL receptor decreases receptor recycling and increases degradation. J Biol Chem 282:18602–18612

    Article  CAS  PubMed  Google Scholar 

  6. Cunningham D, Danley DE, Geoghegan KF, Griffor MC, Hawkins JL, Subashi TA, Varghese AH, Ammirati MJ, Culp JS, Hoth LR, Mansour MN, McGrath KM, Seddon AP, Shenolikar S, Stutzman-Engwall KJ, Warren LC, Xia D, Qiu X (2007) Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol 14:413–419

    Article  CAS  PubMed  Google Scholar 

  7. Sun XM, Eden ER, Tosi I, Neuwirth CK, Wile D, Naoumova RP, Soutar AK (2005) Evidence for effect of mutant PCSK9 on apolipoprotein B secretion as the cause of unusually severe dominant hypercholesterolaemia. Hum Mol Genet 14:1161–1169

    Article  CAS  PubMed  Google Scholar 

  8. Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derré A, Villéger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf JM, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah NG, Boileau C (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34:154–156

    Article  CAS  PubMed  Google Scholar 

  9. Timms KM, Wagner S, Samuels ME, Forbey K, Goldfine H, Jammulapati S, Skolnick MH, Hopkins PN, Hunt SC, Shattuck DM (2004) A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum Genet 114:349–353

    Article  CAS  PubMed  Google Scholar 

  10. Leren TP (2004) Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin Genet 65:419–422

    Article  CAS  PubMed  Google Scholar 

  11. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272

    Article  CAS  PubMed  Google Scholar 

  12. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH (2005) Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 37:161–165

    Article  CAS  PubMed  Google Scholar 

  13. Abifadel M, Rabes JP, Boileau C, Varret M (2007) After the LDL receptor and apolipoprotein B, autosomal dominant hypercholesterolemia reveals its third protagonist: PCSK9. Ann Endocrinol (Paris) 68:138–146

    Article  CAS  Google Scholar 

  14. Polisecki E, Peter I, Robertson M, McMahon AD, Ford I, Packard C, Shepherd J, Jukema JW, Blauw GJ, Westendorp RG, de Craen AJ, Trompet S, Buckley BM, Murphy MB, Ordovas JM, Schaefer EJ, PROSPER Study Group (2008) Genetic variation at the PCSK9 locus moderately lowers low-density lipoprotein cholesterol levels, but does not significantly lower vascular disease risk in an elderly population. Atherosclerosis 200(1):95–101

    Article  CAS  PubMed  Google Scholar 

  15. Scartezini M, Hubbart C, Whittall RA, Cooper JA, Neil AH, Humphries SE (2007) The PCSK9 gene R46L variant is associated with lower plasma lipid levels and cardiovascular risk in healthy UK men. Clin Sci (Lond) 113:435–441

    Article  CAS  Google Scholar 

  16. Huang CC, Fornage M, Lloyd-Jones DM, Wei GS, Boerwinkle E, Liu K (2009) Longitudinal association of PCSK9 sequence variations with low-density lipoprotein cholesterol levels: the coronary artery risk development in young adults study. Circ Cardiovasc Genet 2(4):354–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Chernogubova E, Strawbridge R, Mahdessian H, Mälarstig A, Krapivner S, Gigante B, Hellénius ML, de Faire U, Franco-Cereceda A, Syvänen AC, Troutt JS, Konrad RJ, Eriksson P, Hamsten A, van ‘t Hooft FM (2012) Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels. Arterioscler Thromb Vasc Biol 32(6):1526–1534

    Article  CAS  PubMed  Google Scholar 

  18. Guella I, Asselta R, Ardissino D, Merlini PA, Peyvandi F, Kathiresan S, Mannucci PM, Tubaro M, Duga S (2010) Effects of PCSK9 genetic variants on plasma LDL cholesterol levels and risk of premature myocardial infarction in the Italian population. J Lipid Res 51(11):3342–3349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Benn M, Nordestgaard BG, Grande P, Schnohr P, Tybjaerg-Hansen A (2010) PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol 55(25):2833–2842

    Article  CAS  PubMed  Google Scholar 

  20. Hallman DM, Srinivasan SR, Chen W, Boerwinkle E, Berenson GS (2007) Relation of PCSK9 mutations to serum low-density lipoprotein cholesterol in childhood and adulthood (from the Bogalusa heart study). Am J Cardiol 100(1):69–72

    Article  CAS  PubMed  Google Scholar 

  21. Fasano T, Cefalù AB, Di Leo E, Noto D, Pollaccia D, Bocchi L, Valenti V, Bonardi R, Guardamagna O, Averna M, Tarugi P (2007) A novel loss of function mutation of PCSK9 gene in white subjects with low-plasma low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol 27(3):677–681

    Article  CAS  PubMed  Google Scholar 

  22. Kotowski IK, Pertsemlidis A, Luke A, Cooper RS, Vega GL, Cohen JC, Hobbs HH (2006) A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am J Hum Genet 78:410–422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Mayne J, Ooi TC, Raymond A, Cousins M, Bernier L, Dewpura T, Sirois F, Mbikay M, Davignon J, Chrétien M (2013) Differential effects of PCSK9 loss of function variants on serum lipid and PCSK9 levels in Caucasian and African Canadian populations. Lipids Health Dis 10(12):70

    Article  Google Scholar 

  24. Shioji K, Mannami T, Kokubo Y, Inamoto N, Takagi S, Goto Y, Nonogi H, Iwai N (2004) Genetic variants in PCSK9 affect the cholesterol level in Japanese. J Hum Genet 49(2):109–114

    Article  CAS  PubMed  Google Scholar 

  25. Norata GD, Garlaschelli K, Grigore L, Raselli S, Tramontana S, Meneghetti F, Artali R, Noto D, Cefalù AB, Buccianti G, Averna M, Catapano AL (2010) Effects of PCSK9 variants on common carotid artery intima media thickness and relation to ApoE alleles. Atherosclerosis 208:177–182

    Article  CAS  PubMed  Google Scholar 

  26. Anderson JM, Cerda A, Hirata MH, Rodrigues AC, Dorea EL, Bernik MM, Bertolami MC, Faludi AA, Hirata RD (2014) Influence of PCSK9 polymorphisms on plasma lipids and response to atorvastatin treatment in Brazilian subjects. J Clin Lipidol 8(3):256–264

    Article  PubMed  Google Scholar 

  27. Evans D, Beil FU (2006) The E670G SNP in the PCSK9 gene is associated with polygenic hypercholesterolemia in men but not in women. BMC Med Genet 31:66

    Article  Google Scholar 

  28. Slimani A, Harira Y, Trabelsi I, Jomaa W, Maatouk F, Hamda KB, Slimane MN (2014) Effect of E670G polymorphism in PCSK9 gene on the risk and severity of coronary heart disease and ischemic stroke in a Tunisian cohort. J Mol Neurosci 53:150–157

    Article  CAS  PubMed  Google Scholar 

  29. Abboud S, Karhunen PJ, Lütjohann D, Goebeler S, Luoto T, Friedrichs S, Lehtimaki T, Pandolfo M, Laaksonen R (2007) Proprotein convertase subtilisin/kexin type 9 (PCSK9) gene is a risk factor of large-vessel atherosclerosis stroke. PLoS One 2:e1043

    Article  PubMed Central  PubMed  Google Scholar 

  30. Chen SN, Ballantyne CM, Gotto AM Jr, Tan Y, Willerson JT, Marian AJ (2005) A common PCSK9 haplotype, encompassing the E670G coding single nucleotide polymorphism, is a novel genetic marker for plasma low density lipoprotein cholesterol levels and severity of coronary atherosclerosis. J Am Coll Cardiol 45:1611–1619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hsu LA, Teng MS, Ko YL, Chang CJ, Wu S, Wang CL, Hu CF (2009) The PCSK9 gene E670G polymorphism affects low-density lipoprotein cholesterol levels but is not a risk factor for coronary artery disease in ethnic Chinese in Taiwan. Clin Chem Lab Med 47(2):154–158

    Article  CAS  PubMed  Google Scholar 

  32. Aung LH, Yin RX, Miao L, Hu XJ, Yan TT, Cao XL, Wu DF, Li Q, Pan SL, Wu JZ (2011) The proprotein convertase subtilisin/kexin type 9 gene E670G polymorphism and serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Lipids Health Dis 10:5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Mahley RW, Rall SC Jr (2000) Apolipoprotein E: far more than a lipid transport protein. Annu Rev Geno Hum Genet 1:507–537

    Article  CAS  Google Scholar 

  34. Bennet AM, Di Angelantonio E, Ye Z, Wensley F, Dahlin A, Ahlbom A, Keavney B, Collins R, Wiman B, de Faire U, Danesh J (2007) Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA 298:1300–1311

    Article  CAS  PubMed  Google Scholar 

  35. Kataoka S, Robbins DC, Cowan LD, Go O, Yeh JL, Devereux RB, Fabsitz RR, Lee ET, Welty TK, Howard BV (1996) Apolipoprotein E polymorphism in American Indians and its relation to plasma lipoproteins and diabetes. The strong heart study. Arterioscler Thromb Vasc Biol 16:918–925

    Article  CAS  PubMed  Google Scholar 

  36. Zivelin A, Rosenberg N, Peretz H, Amit Y, Kornbrot N, Seligsohn U (1997) Improved method for genotyping apolipoprotein E polymorphisms by a PCR-based assay simultaneously utilizing two distinct restriction enzymes. Clin Chem 43:1657–1659

    CAS  PubMed  Google Scholar 

  37. Aekplakorn W, Kessomboon P, Sangthong R, Chariyalertsak S, Putwatana P, Inthawong R, Nitiyanant W, Taneepanichskul S, NHES IV study group (2011) Urban and rural variation in clustering of metabolic syndrome components in the Thai population: results from the fourth National Health Examination Survey 2009. BMC Public Health 11:854

    Article  PubMed Central  PubMed  Google Scholar 

  38. Aung LH, Yin RX, Wu DF, Cao XL, Hu XJ, Miao L (2013) Proprotein convertase subtilisin/kexin type 9 gene E670G polymorphism interacts with alcohol consumption to modulate serum lipid levels. Int J Med Sci 10(2):124–132

    Article  PubMed Central  PubMed  Google Scholar 

  39. Xhignesse M, Lussier-Cacan S, Sing CF, Kessling AM, Davignon J (1991) Influences of common variants of apolipoprotein E on measures of lipid metabolism in a sample selected for health. Arterioscler Thromb 11:1100–1110

    Article  CAS  PubMed  Google Scholar 

  40. Sing CF, Davignon J (1985) Role of the apolipoprotein E polymorphism in determining normal plasma lipid and lipoprotein variation. Am J Hum Genet 37:268–285

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Office of the Higher Education Commission, the Thailand Research Fund, and Walailak University (Project No. MRG5580068). The authors would like to thank to all subjects who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nutjaree Jeenduang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeenduang, N., Porntadavity, S. & Wanmasae, S. Combined PCSK9 and APOE Polymorphisms are Genetic Risk Factors Associated with Elevated Plasma Lipid Levels in a Thai Population. Lipids 50, 543–553 (2015). https://doi.org/10.1007/s11745-015-4017-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4017-9

Keywords

Navigation