The 2023 MDPI Annual Report has
been released!
 
16 pages, 27615 KiB  
Article
Crystal Plasticity Finite Element Modeling of the Influences of Ultrafine-Grained Austenite on the Mechanical Response of a Medium-Mn Steel
by Pengfei Shen, Yang Liu and Xiang Zhang
Crystals 2024, 14(5), 405; https://doi.org/10.3390/cryst14050405 (registering DOI) - 26 Apr 2024
Abstract
Medium manganese (medium-Mn) steel, one of the third-generation advanced high-strength steels (AHSS), delivers impressive mechanical properties such as high yield strength, ultimate tensile strength, and uniform elongation. One notable feature of medium-Mn steels is the presence of ultrafine-grained (UFG) austenite, achieved through phase [...] Read more.
Medium manganese (medium-Mn) steel, one of the third-generation advanced high-strength steels (AHSS), delivers impressive mechanical properties such as high yield strength, ultimate tensile strength, and uniform elongation. One notable feature of medium-Mn steels is the presence of ultrafine-grained (UFG) austenite, achieved through phase transformation from the parent martensite phase during intercritical annealing. While, in general, UFG is considered a strengthening mechanism, the impact of UFG austenites in medium-Mn steel has not been fully studied. In this manuscript, we advance our previous work on crystal plasticity simulation based on the Taylor model to consider fully resolved high-fidelity microstructures and systematically study the influence of the UFG austenites. The original microstructure with UFG is reconstructed from a set of serial electron backscatter diffraction (EBSD) scans, where the exact grain morphology, orientation, and phase composition are preserved. This microstructure was further analyzed to identify the UFG austenites and recover them to their parent martensite before the intercritical annealing. These two high-fidelity microstructures are used for a comparative study using dislocation density-based crystal plasticity finite modeling to understand the impact of UFG austenites on both the local and overall mechanical responses. Full article
Show Figures

Figure 1

12 pages, 2717 KiB  
Article
A Model-Free Deep Reinforcement Learning-Based Approach for Assessment of Real-Time PV Hosting Capacity
by Jude Suchithra, Duane A. Robinson and Amin Rajabi
Energies 2024, 17(9), 2075; https://doi.org/10.3390/en17092075 (registering DOI) - 26 Apr 2024
Abstract
Assessments of the hosting capacity of electricity distribution networks are of paramount importance, as they facilitate the seamless integration of rooftop photovoltaic systems into the grid, accelerating the transition towards a more carbon neutral and sustainable system. This paper employs a deep reinforcement [...] Read more.
Assessments of the hosting capacity of electricity distribution networks are of paramount importance, as they facilitate the seamless integration of rooftop photovoltaic systems into the grid, accelerating the transition towards a more carbon neutral and sustainable system. This paper employs a deep reinforcement learning-based approach to evaluate the real-time hosting capacity of low voltage distribution networks in a model-free manner. The proposed approach only requires real-time customer voltage data and solar irradiation data to provide a fast and accurate estimate of real-time hosting capacity at each customer connection point. This study addresses the imperative for accurate electrical models, which are frequently unavailable, in evaluating the hosting capacity of electricity distribution networks. To meet this challenge, the proposed approach utilizes a deep neural network-based, data-driven model of a low-voltage electricity distribution network. This proposed methodology incorporates model-free elements, enhancing its adaptability and robustness. In addition, a comparative analysis between model-based and model-free hosting capacity assessment methods is presented, highlighting their respective strengths and weaknesses. The utilization of the proposed hosting capacity estimation model enables distribution network service providers to make well-informed decisions regarding grid planning, leading to cost minimization. Full article
Show Figures

Figure 1

14 pages, 6600 KiB  
Article
Development of an Artificial-Intelligence-Based Tool for Automated Assessment of Cellularity in Bone Marrow Biopsies in Ph-Negative Myeloproliferative Neoplasms
by Giuseppe D’Abbronzo, Antonio D’Antonio, Annarosaria De Chiara, Luigi Panico, Lucianna Sparano, Anna Diluvio, Antonello Sica, Gino Svanera, Renato Franco and Andrea Ronchi
Cancers 2024, 16(9), 1687; https://doi.org/10.3390/cancers16091687 (registering DOI) - 26 Apr 2024
Abstract
The cellularity assessment in bone marrow biopsies (BMBs) for the diagnosis of Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms (MPNs) is a key diagnostic feature and is usually performed by the human eyes through an optical microscope with consequent inter-observer and intra-observer variability. Thus, the [...] Read more.
The cellularity assessment in bone marrow biopsies (BMBs) for the diagnosis of Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms (MPNs) is a key diagnostic feature and is usually performed by the human eyes through an optical microscope with consequent inter-observer and intra-observer variability. Thus, the use of an automated tool may reduce variability, improving the uniformity of the evaluation. The aim of this work is to develop an accurate AI-based tool for the automated quantification of cellularity in BMB histology. A total of 55 BMB histological slides, diagnosed as Ph- MPN between January 2018 and June 2023 from the archives of the Pathology Unit of University “Luigi Vanvitelli” in Naples (Italy), were scanned on Ventana DP200 or Epredia P1000 and exported as whole-slide images (WSIs). Fifteen BMBs were randomly selected to obtain a training set of AI-based tools. An expert pathologist and a trained resident performed annotations of hematopoietic tissue and adipose tissue, and annotations were exported as .tiff images and .png labels with two colors (black for hematopoietic tissue and yellow for adipose tissue). Subsequently, we developed a semantic segmentation model for hematopoietic tissue and adipose tissue. The remaining 40 BMBs were used for model verification. The performance of our model was compared with an evaluation of the cellularity of five expert hematopathologists and three trainees; we obtained an optimal concordance between our model and the expert pathologists’ evaluation, with poorer concordance for trainees. There were no significant differences in cellularity assessments between two different scanners. Full article
Show Figures

Graphical abstract

14 pages, 3468 KiB  
Article
Through-Ice Acoustic Communication for Ocean Worlds Exploration
by Hyeong Jae Lee, Yoseph Bar-Cohen, Mircea Badescu, Stewart Sherrit, Benjamin Hockman, Scott Bryant, Samuel M. Howell, Elodie Lesage and Miles Smith
Sensors 2024, 24(9), 2776; https://doi.org/10.3390/s24092776 (registering DOI) - 26 Apr 2024
Abstract
Subsurface exploration of ice-covered planets and moons presents communications challenges because of the need to communicate through kilometers of ice. The objective of this task is to develop the capability to wirelessly communicate through kilometers of ice and thus complement the potentially failure-prone [...] Read more.
Subsurface exploration of ice-covered planets and moons presents communications challenges because of the need to communicate through kilometers of ice. The objective of this task is to develop the capability to wirelessly communicate through kilometers of ice and thus complement the potentially failure-prone tethers deployed behind an ice-penetrating probe on Ocean Worlds. In this paper, the preliminary work on the development of wireless deep-ice communication is presented and discussed. The communication test and acoustic attenuation measurements in ice have been made by embedding acoustic transceivers in glacial ice at the Matanuska Glacier, Anchorage, Alaska. Field test results show that acoustic communication is viable through ice, demonstrating the transmission of data and image files in the 13–18 kHz band over 100 m. The results suggest that communication over many kilometers of ice thickness could be feasible by employing reduced transmitting frequencies around 1 kHz, though future work is needed to better constrain the likely acoustic attenuation properties through a refrozen borehole. Full article
Show Figures

Figure 1

14 pages, 11462 KiB  
Article
Self-Powered Pressure–Temperature Bimodal Sensing Based on the Piezo-Pyroelectric Effect for Robotic Perception
by Xiang Yu, Yun Ji, Xinyi Shen and Xiaoyun Le
Sensors 2024, 24(9), 2773; https://doi.org/10.3390/s24092773 (registering DOI) - 26 Apr 2024
Abstract
Multifunctional sensors have played a crucial role in constructing high-integration electronic networks. Most of the current multifunctional sensors rely on multiple materials to simultaneously detect different physical stimuli. Here, we demonstrate the large piezo-pyroelectric effect in ferroelectric Pb(Mg1/3Nb2/3)O3 [...] Read more.
Multifunctional sensors have played a crucial role in constructing high-integration electronic networks. Most of the current multifunctional sensors rely on multiple materials to simultaneously detect different physical stimuli. Here, we demonstrate the large piezo-pyroelectric effect in ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals for simultaneous pressure and temperature sensing. The outstanding piezoelectric and pyroelectric properties of PMN-PT result in rapid response speed and high sensitivity, with values of 46 ms and 28.4 nA kPa−1 for pressure sensing, and 1.98 s and 94.66 nC °C−1 for temperature detection, respectively. By leveraging the distinct differences in the response speed of piezoelectric and pyroelectric responses, the piezo-pyroelectric effect of PMN-PT can effectively detect pressure and temperature from mixed-force thermal stimuli, which enables a robotic hand for stimuli classification. With appealing multifunctionality, fast speed, high sensitivity, and compact structure, the proposed self-powered bimodal sensor therefore holds significant potential for high-performance artificial perception. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Graphical abstract

18 pages, 1561 KiB  
Article
Biodiversity Conservation in Xishuangbanna, China: Diversity Analysis of Traditional Knowledge Related to Biodiversity and Conservation Progress and Achievement Evaluation
by Qing Huang, Yinzhi Kuang, Hao Zhou, Xunqi Li and Lun Yin
Diversity 2024, 16(5), 260; https://doi.org/10.3390/d16050260 (registering DOI) - 26 Apr 2024
Abstract
Biodiversity plays an important role in maintaining the ecological balance of the earth. The study of traditional knowledge related to biological resources is a hot issue in the field of international biodiversity conservation. Xishuangbanna is a key area of biodiversity and a cultural [...] Read more.
Biodiversity plays an important role in maintaining the ecological balance of the earth. The study of traditional knowledge related to biological resources is a hot issue in the field of international biodiversity conservation. Xishuangbanna is a key area of biodiversity and a cultural hotspot of international significance. According to the Technical Regulation for Classification, Investigation, and Inventory of Traditional Knowledge Relating to Biological Diversity issued by the Ministry of Ecology and Environment, we investigated and catalogued the traditional knowledge related to biodiversity of the Jino people who have lived in Xishuangbanna for generations, and collected 490 entries of traditional knowledge related to biodiversity of the Jino people. Drawing on the traditional knowledge diversity index calculation method proposed by Wang Guoping, the overall traditional knowledge α-diversity index of the Jino people is 0.63, indicating that the richness of the traditional knowledge of the Jinuo people is relatively high. The traditional culture related to biodiversity, the traditional knowledge related to agricultural genetic resources, and the traditional technology related to the sustainable utilization of biological resources are relatively rich and diverse. The diversity index is 0.86, 0.82 and 0.79, respectively. In addition, Xishuangbanna has invested a lot of energy in biodiversity protection, including the establishment of nature reserves, botanical gardens, zoos, ecological tea gardens and other species reserves, and the promulgation of laws and policies related to biodiversity protection, and has achieved remarkable results in in situ protection and ex situ protection. On the basis of analyzing the progress and achievements of biodiversity conservation in Xishuangbanna, this study points out that Xishuangbanna faces challenges such as the loss of traditional knowledge, insufficient conservation efforts, and great changes in land use, and puts forward corresponding suggestions. Full article
(This article belongs to the Special Issue Biodiversity Conservation Planning and Assessment)
Show Figures

Figure 1

13 pages, 1376 KiB  
Article
Developmental Characteristics and Genesis of Ground Fissures in Wangjiacun, Emei Plateau, Yuncheng Basin, China
by Feida Li, Feiyong Wang, Fujiang Wang and Guoqing Li
Sustainability 2024, 16(9), 3649; https://doi.org/10.3390/su16093649 (registering DOI) - 26 Apr 2024
Abstract
The Yuncheng Basin is part of the Fenwei Graben System, which has developed ground fissure hazards that have caused serious damage to farmland, houses, and roads and have brought about huge economic losses. Located in Wanrong County on the Emei Plateau in the [...] Read more.
The Yuncheng Basin is part of the Fenwei Graben System, which has developed ground fissure hazards that have caused serious damage to farmland, houses, and roads and have brought about huge economic losses. Located in Wanrong County on the Emei Plateau in the northwestern part of the Yuncheng Basin in China, the Wangjiacun ground fissure is a typical and special ground fissure developed in loess areas, and its formation is closely related to tectonic joints and the collapsibility of loess. In order to reveal the formation and genesis of the Wangjiacun ground fissure, the geological background, developmental characteristics, and genesis pattern of the Wangjiacun ground fissures were studied in detail. A total of three ground fissures have developed in this area: a linear fissure (f1) is distributed in an NNE-SSW direction, with a total length of 334 m; a circular fissure (f2) is located near the pool, with a total length of 720 m; f2-1, a linear fissure near f2, has a fissure length of 110 m and an NE orientation. This study shows that tectonic joints in loess areas are the main controlling factors of the linear fissure (f1); differential subsidence in the pool caused by collapsible loess is the main source of motivation for the formation of the circular fissures (f2, f2-1), and tensile stresses produced by the edges of subsidence funnels lead to the cracking of shallow rock and soil bodies to form ground fissures (f2, f2-1). This study enriches the theory of ground fissure genesis and is of great significance for disaster prevention and the mitigation of ground fissures in loess areas. Full article
30 pages, 1532 KiB  
Article
Product Improvement Using Knowledge Mining and Effect Analogy
by Kang Wang, Runhua Tan and Qingjin Peng
Appl. Sci. 2024, 14(9), 3699; https://doi.org/10.3390/app14093699 (registering DOI) - 26 Apr 2024
Abstract
Different from new product development, design improvement aims to solve the problems of existing products. Although design knowledge and effect tools have been applied in product improvement, the existing methods for design improvement are limited in their specific application areas. A general method [...] Read more.
Different from new product development, design improvement aims to solve the problems of existing products. Although design knowledge and effect tools have been applied in product improvement, the existing methods for design improvement are limited in their specific application areas. A general method of product improvement is proposed in this paper using the knowledge mining and effect analogy. The length–time dimension is introduced to link the problem analysis and problem-solving for the first time. This method includes the effect knowledge base construction, length–time dimension extraction, effect retrieval, effect ranking, analogy object selection, and effect structure mapping. This method integrates a variety of algorithms and software tools in design knowledge mining to improve the efficiency of the effect analogy for product improvement. Through the comparative analysis of three effect retrieval methods and design improvement of a button battery ring device, the superiority and feasibility of the proposed method are verified. Full article
(This article belongs to the Section Mechanical Engineering)
20 pages, 742 KiB  
Review
Agricultural Practices for Biodiversity Enhancement: Evidence and Recommendations for the Viticultural Sector
by Sara M. Marcelino, Pedro Dinis Gaspar, Arminda do Paço, Tânia M. Lima, Ana Monteiro, José Carlos Franco, Erika S. Santos, Rebeca Campos and Carlos M. Lopes
AgriEngineering 2024, 6(2), 1175-1194; https://doi.org/10.3390/agriengineering6020067 (registering DOI) - 26 Apr 2024
Abstract
Agricultural expansion and intensification worldwide has caused a reduction in ecological infrastructures for insects, herbaceous plants, and vertebrate insectivores, among other organisms. Agriculture is recognized as one of the key influences in biodiversity decline, and initiatives such as the European Green Deal highlight [...] Read more.
Agricultural expansion and intensification worldwide has caused a reduction in ecological infrastructures for insects, herbaceous plants, and vertebrate insectivores, among other organisms. Agriculture is recognized as one of the key influences in biodiversity decline, and initiatives such as the European Green Deal highlight the need to reduce ecosystem degradation. Among fruit crops, grapes are considered one of the most intensive agricultural systems with the greatest economic relevance. This study presents a compilation of management practices to enhance biodiversity performance, which applies generally to the agricultural sector and, in particular, to viticulture, concerning the diversity of plants, semi-natural habitats, soil management, and the chemical control strategies and pesticides used in agricultural cultivation. Through a critical review, this study identifies a set of recommendations for biodiversity performance and their corresponding effects, contributing to the dissemination of management options to boost biodiversity performance. The results highlight opportunities for future investigations in determining the needed conditions to ensure both biodiversity enhancement and productive gains, and understanding the long-term effects of innovative biodiversity-friendly approaches. Full article
15 pages, 598 KiB  
Article
Abstinence and Fear Experienced during This Period Produce Distinct Cortical and Hippocampal Adaptations in Alcohol-Dependent Rats
by Noah L. Steiner, Dvijen C. Purohit, Casey M. Tiefenthaler and Chitra D. Mandyam
Brain Sci. 2024, 14(5), 431; https://doi.org/10.3390/brainsci14050431 (registering DOI) - 26 Apr 2024
Abstract
Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence produces significant gray matter damage via myelin dysfunction in the rodent medial prefrontal cortex (mPFC) and alterations in neuronal excitability in the [...] Read more.
Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence produces significant gray matter damage via myelin dysfunction in the rodent medial prefrontal cortex (mPFC) and alterations in neuronal excitability in the mPFC and the dentate gyrus (DG) of the hippocampus. Specifically, abstinence-induced neuroadaptations have been associated with persistent elevated relapse to drinking. The current study evaluated the effects of forced abstinence for 1 day (d), 7 d, 21 d, and 42 d following seven weeks of CIE on synaptic plasticity proteins in the mPFC and DG. Immunoblotting revealed reduced expression of CaMKII in the mPFC and enhanced expression of GABAA and CaMKII in the DG at the 21 d time point, and the expression of the ratio of GluN2A/2B subunits did not change at any of the time points studied. Furthermore, cognitive performance via Pavlovian trace fear conditioning (TFC) was evaluated in 3 d abstinent rats, as this time point is associated with negative affect. In addition, the expression of the ratio of GluN2A/2B subunits and a 3D structural analysis of neurons in the mPFC and DG were evaluated in 3 d abstinent rats. Behavioral analysis revealed faster acquisition of fear responses and reduced retrieval of fear memories in CIE rats compared to controls. TFC produced hyperplasticity of pyramidal neurons in the mPFC under control conditions and this effect was not evident or blunted in abstinent rats. Neurons in the DG were unaltered. TFC enhanced the GluN2A/2B ratio in the mPFC and reduced the ratio in the DG and was not altered by abstinence. These findings indicate that forced abstinence from CIE produces distinct and divergent alterations in plasticity proteins in the mPFC and DG. Fear learning-induced changes in structural plasticity and proteins contributing to it were more profound in the mPFC during forced abstinence. Full article
(This article belongs to the Special Issue Brain Structural and Functional Correlates of Addiction)
18 pages, 2752 KiB  
Article
Anatomical and Metabolome Features of Haloxylon aphyllum and Haloxylon persicum Elucidate the Resilience against Gall-Forming Insects
by Nina V. Terletskaya, Aigerim Mamirova, Kazhybek Ashimuly, Yekaterina P. Vibe and Yana A. Krekova
Int. J. Mol. Sci. 2024, 25(9), 4738; https://doi.org/10.3390/ijms25094738 (registering DOI) - 26 Apr 2024
Abstract
Globally, gall-forming insects significantly contribute to the degradation of desert ecosystems. Recent studies have demonstrated that Haloxylon persicum suffers less damage from gall-formers compared to Haloxylon aphyllum. However, the mechanisms driving the long-term metabolic responses of these species to gall-forming biotic stress [...] Read more.
Globally, gall-forming insects significantly contribute to the degradation of desert ecosystems. Recent studies have demonstrated that Haloxylon persicum suffers less damage from gall-formers compared to Haloxylon aphyllum. However, the mechanisms driving the long-term metabolic responses of these species to gall-forming biotic stress in their natural environment remain unclear. The current study comparatively analyzes the anatomical features and metabolomic changes in H. aphyllum and H. persicum damaged by gall-forming insects. This research aimed to uncover potential metabolic tolerance mechanisms through GC-MS analysis. The study findings indicate that gall-forming insects cause a reduction in nearly all the anatomical structures of Haloxylon shoots, with the effects being less severe in H. persicum than in H. aphyllum. Thus, the metabolic pathways responsible for the biosynthesis of biologically active substances that enhance resistance to gall inducers were different, specifically in H. aphyllum—the biosynthesis of fatty acids (+their derivatives) and γ-tocopherol (vitamin E) and H. persicum—the biosynthesis of fatty acids (+their derivatives), dialkyl ethers, carbohydrates (+their derivatives), aromatic acid derivatives, phytosterols, γ-tocopherol (vitamin E), phenols, and terpenoids. The results suggest that the modulation of metabolic pathways under biotic stress plays a crucial role in the enhanced survival and growth of H. persicum. Full article
18 pages, 5124 KiB  
Article
Nephrite from Xinjiang Qiemo Margou Deposit: Gemological and Geochemical Insights
by Ting Fang, Yuan Chang and Mingxing Yang
Minerals 2024, 14(5), 458; https://doi.org/10.3390/min14050458 (registering DOI) - 26 Apr 2024
Abstract
The nephrite belt in the Altun Mountain–Western Kunlun Mountain region, which extends about 1300 km in Xinjiang, NW China, is the largest nephrite deposit in the world. The Qiemo region in the Altun Mountains is a crucial nephrite-producing area in China, with demonstrated [...] Read more.
The nephrite belt in the Altun Mountain–Western Kunlun Mountain region, which extends about 1300 km in Xinjiang, NW China, is the largest nephrite deposit in the world. The Qiemo region in the Altun Mountains is a crucial nephrite-producing area in China, with demonstrated substantial prospects for future exploration. While existing research has extensively investigated secondary nephrite deposits in the Karakash River and native black nephrite deposits in Guangxi Dahua, a comprehensive investigation of black nephrite from original deposits in Xinjiang is lacking. Margou black-toned nephrite was recently found in primary deposits in Qiemo County, Xinjiang; this makes in-depth research on the characteristics of this mine necessary. A number of technical analytical methods such as polarizing microscopy, Ultra-Deep Three-Dimensional Microscope, electron microprobe, back-scattered electron image analysis, X-ray fluorescence, and inductively coupled plasma mass spectrometry were employed for this research. An experimental test was conducted to elucidate the chemical and mineralogical composition, further clarifying the genetic types of the black and black cyan nephrite from the Margou deposit in Qiemo, Xinjiang. The results reveal that the nephrite is mainly composed of tremolite–actinolite, characterized by Mg/(Mg + Fe2+) ratios ranging from 0.86 to 1.0. Minor minerals include diopside, epidote, pargasite, apatite, zircon, pyrite, and magnetite. Bulk-rock rare earth element (REE) patterns exhibit distinctive features, such as negative Eu anomalies (δEu = 0.00–0.17), decreasing light REEs, a relatively flat distribution of heavy REEs, and low total REE concentrations (1.6–38.9 μg/g); furthermore, the Cr (6–21 μg/g) and Ni (2.5–4.5 μg/g) contents are remarkably low. The magmatic influence of granite appears to be a fundamental factor in the genesis of the magnesian skarn hosting Margou nephrite. The distinctive black and black cyan colors are attributed to heightened iron content, mainly associated with FeO (0.08~6.29 wt.%). Analyses of the chemical composition allow Margou nephrite to be classified as typical of magnesian skarn deposits. Full article
(This article belongs to the Special Issue Gem Deposits: Mineralogical and Gemological Aspects, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 2342 KiB  
Article
Estimation of the Impact of Abdominal Adipose Tissue (Subcutaneous and Visceral) on the Occurrence of Carbohydrate and Lipid Metabolism Disorders in Patients with Obesity—A Pilot Study
by Katarzyna Witczak-Sawczuk, Lucyna Ostrowska, Urszula Cwalina, Joanna Leszczyńska, Marta Jastrzębska-Mierzyńska and Marcin Krzysztof Hładuński
Nutrients 2024, 16(9), 1301; https://doi.org/10.3390/nu16091301 (registering DOI) - 26 Apr 2024
Abstract
Obesity represents a significant global public health concern. The excessive accumulation of abdominal adipose tissue is often implicated in the development of metabolic complications associated with obesity. Our study aimed to investigate the impact of particular deposits of abdominal adipose tissue on the [...] Read more.
Obesity represents a significant global public health concern. The excessive accumulation of abdominal adipose tissue is often implicated in the development of metabolic complications associated with obesity. Our study aimed to investigate the impact of particular deposits of abdominal adipose tissue on the occurrence of carbohydrate and lipid metabolism complications. We established cut-off points for visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and the VAT/SAT ratio at which selected metabolic complications of obesity-related diseases (disorders of carbohydrate and/or lipid metabolism) occur. We conducted an observational study involving 91 subjects with first- and second-degree obesity, accounting for gender differences. Anthropometric measurements were taken, body composition analysis (BIA) was conducted, and biochemical determinations were made. Our findings suggest that commonly used parameters for assessing early metabolic risk, such as BMI or waist circumference, may overlook the significant factor of body fat distribution, as well as gender differences. Both visceral and subcutaneous adipose tissue were found to be important in estimating metabolic risk. We identified the cut-off points in women in terms of their elevated fasting glucose levels and the presence of insulin resistance (HOMA-IR: homeostasis model assessment of insulin resistance) based on SAT, VAT, and the VAT/SAT ratio. In men, cut-off points were determined for the presence of insulin resistance (HOMA-IR) based on VAT and the VAT/SAT ratio. However, the results regarding lipid disorders were inconclusive, necessitating further investigation of a larger population. Full article
(This article belongs to the Special Issue Public Health, Nutritional Behavior and Nutritional Status)
Show Figures

Graphical abstract

35 pages, 19880 KiB  
Article
Fractional-Order PIlDm Control to Enhance the Driving Smoothness of Active Vehicle Suspension in Electric Vehicles
by Zongjun Yin, Ru Wang, Xuegang Ma and Rong Su
World Electr. Veh. J. 2024, 15(5), 184; https://doi.org/10.3390/wevj15050184 (registering DOI) - 26 Apr 2024
Abstract
The suspension system is a crucial part of an electric vehicle, which directly affects its handling performance, driving comfort, and driving safety. The dynamics of the 8-DoF full-vehicle suspension with seat active control are established based on rigid-body dynamics, and the time-domain stochastic [...] Read more.
The suspension system is a crucial part of an electric vehicle, which directly affects its handling performance, driving comfort, and driving safety. The dynamics of the 8-DoF full-vehicle suspension with seat active control are established based on rigid-body dynamics, and the time-domain stochastic excitation model of four tires is constructed by the filtered white noise method. The suspension dynamics model and road surface model are constructed on the Matlab/Simulink simulation software platform, and the simulation study of the dynamic characteristics of active suspension based on the fractional-order PIlDm control strategy is carried out. The three performance indicators of acceleration, suspension dynamic deflection, and tire dynamic displacement are selected to construct the fitness function of the genetic algorithm, and the structural parameters of the fractional-order PIlDm controller are optimized using the genetic algorithm. The control effect of the optimized fractional-order PIlDm controller based on the genetic algorithm is analyzed by comparing the integer-order PID control suspension and passive suspension. The simulation results show that for optimized fractional-order PID control suspension, compared with passive suspension, the average optimization of the root mean square (RMS) of acceleration under random road conditions reaches over 25%, the average optimization of suspension dynamic deflection exceeds 30%, and the average optimization of tire dynamic displacement is 5%. However, compared to the integer-order PID control suspension, the average optimization of the root mean square (RMS) of acceleration under random road conditions decreased by 5%, the average optimization of suspension dynamic deflection increased by 3%, and the average optimization of tire dynamic displacement increased by 2%. Full article
31 pages, 28446 KiB  
Article
Optimization Based on Computational Fluid Dynamics and Machine Learning for the Performance of Diffuser-Augmented Wind Turbines with Inlet Shrouds
by Po-Wen Hwang, Jia-Heng Wu and Yuan-Jen Chang
Sustainability 2024, 16(9), 3648; https://doi.org/10.3390/su16093648 (registering DOI) - 26 Apr 2024
Abstract
A methodology that could reduce computational cost and time, combining computational fluid dynamics (CFD) simulations, neural networks, and genetic algorithms to determine a diffuser-augmented wind turbine (DAWT) design is proposed. The specific approach used implements a CFD simulation validated with experimental data, and [...] Read more.
A methodology that could reduce computational cost and time, combining computational fluid dynamics (CFD) simulations, neural networks, and genetic algorithms to determine a diffuser-augmented wind turbine (DAWT) design is proposed. The specific approach used implements a CFD simulation validated with experimental data, and key parameters are analyzed to generate datasets for the relevant mathematical model established with the backpropagation neural network algorithm. Then, the mathematical model is used with the non-dominant sorting genetic algorithm II to optimize the design and improve the DAWT design to overcome negative constraints such as noise and low energy density. The key parameters adopted are the diffuser’s flange height/angle, the diffuser’s length, and the rotor’s axial position. It was found that the impact of the rotor’s axial position on the power output of the DAWT is the most significant parameter, and a well-designed diffuser requires accelerating the airflow while maintaining high-pressure recovery. Introducing a diffuser can suppress the wind turbine’s noise, but if the induced tip vortex is too strong, it will have the opposite effect on the noise reduction. Full article
(This article belongs to the Special Issue Application of Green Energy Technology in Sustainable Environment)
Show Figures

Figure 1

14 pages, 14717 KiB  
Article
Fabrication of Ciprofloxacin-Immobilized Calcium Phosphate Particles for Dental Drug Delivery
by Aniruddha Pal, Ayako Oyane, Tomoya Inose, Maki Nakamura, Erika Nishida and Hirofumi Miyaji
Materials 2024, 17(9), 2035; https://doi.org/10.3390/ma17092035 (registering DOI) - 26 Apr 2024
Abstract
Calcium phosphate (CaP) particles immobilizing antibacterial agents have the potential to be used as dental disinfectants. In this study, we fabricated CaP particles with immobilized ciprofloxacin (CF), a commonly prescribed antibacterial agent, via a coprecipitation process using a supersaturated CaP solution. As the [...] Read more.
Calcium phosphate (CaP) particles immobilizing antibacterial agents have the potential to be used as dental disinfectants. In this study, we fabricated CaP particles with immobilized ciprofloxacin (CF), a commonly prescribed antibacterial agent, via a coprecipitation process using a supersaturated CaP solution. As the aging time in the coprecipitation process increased from 2 to 24 h, the CaP phase in the resulting particles transformed from amorphous to low-crystalline hydroxyapatite, and their Ca/P elemental ratio, yield, and CF content increased. Despite the higher CF content, the particles aged for 24 h displayed a slower release of CF in a physiological salt solution, most likely owing to their crystallized matrix (less soluble hydroxyapatite), than those aged for 2 h, whose matrix was amorphous CaP. Both particles exhibited antibacterial and antibiofilm activities along with an acid-neutralizing effect against the major oral bacteria, Streptococcus mutans, Porphyromonas gingivalis, and Actinomyces naeslundii, in a dose-dependent manner, although their dose–response relationship was slightly different. The aging time in the coprecipitation process was identified as a governing factor affecting the physicochemical properties of the resulting CF-immobilized CaP particles and their functionality as a dental disinfectant. Full article
(This article belongs to the Special Issue Advanced Dental Materials: From Design to Application)
Show Figures

Figure 1

22 pages, 763 KiB  
Article
Calibration and Evaluation of the SIMPLE Crop Growth Model Applied to the Common Bean under Irrigation
by Miguel Servín-Palestina, Irineo López-Cruz, Jorge A. Zegbe, Agustín Ruiz-García, Raquel Salazar-Moreno and José Ángel Cid-Ríos
Agronomy 2024, 14(5), 917; https://doi.org/10.3390/agronomy14050917 (registering DOI) - 26 Apr 2024
Abstract
Bean production is at risk due to climate change, declining water resources, and inadequate crop management. To address these challenges, dynamic models that predict crop growth and development can be used as fundamental tools to generate basic and applied knowledge such as production [...] Read more.
Bean production is at risk due to climate change, declining water resources, and inadequate crop management. To address these challenges, dynamic models that predict crop growth and development can be used as fundamental tools to generate basic and applied knowledge such as production management and decision support. This study aimed to calibrate and evaluate the SIMPLE model under irrigation conditions for a semi-arid region in north-central Mexico and to simulate thermal time, biomass (Bio), and grain yield (GY) of common beans cv. ‘Pinto Saltillo’ using experimental data from four crop evapotranspiration treatments (ETct) (I50, I75, I100, and I125) applied during the 2020 and 2021 growing seasons. Both experiments were conducted in a randomized complete block design with three replicates. Model calibration was carried out by posing and solving an optimization problem with the differential-evolution algorithm with 2020 experimental data, while the evaluation was performed with 2021 experimental data. For Bio, calibration values had a root-mean-square error and Nash and Sutcliffe’s efficiency of < 0.58 t ha−1 and > 0.93, respectively, while the corresponding evaluation values were < 1.80 t ha−1 and > 0.89, respectively. The I50 and I100 ETct had better fit for calibration, while I50 and I75 had better fit in the evaluation. On average, the model fitted for the predicted GY values had estimation errors of 37% and 22% for the calibration and evaluation procedures, respectively. Therefore, an empirical model was proposed to estimate the harvest index (HI), which produced, on average, a relative error of 6.9% for the bean-GY estimation. The SIMPLE model was able to predict bean biomass under irrigated conditions for these semi-arid regions of Mexico. Also, the use of both crop Bio and transpiration simulated by the SIMPLE model to calculate the HI significantly improved GY prediction under ETct. However, the harvest index needs to be validated under other irrigation levels and field experiments in different locations to strengthen the proposed model and design different GY scenarios under water restrictions for irrigation due to climate change. Full article
24 pages, 1604 KiB  
Article
Optimization of Integrated Energy System Considering Electricity and Hydrogen Coordination in the Context of Carbon Trading
by Xiaofeng Li, Bing Wang, Duoyu Pan, Xiong Yu, Yanling Che, Qianye Lei, Lijia Yang, Baofeng Wang and Hao Lu
Processes 2024, 12(5), 873; https://doi.org/10.3390/pr12050873 (registering DOI) - 26 Apr 2024
Abstract
In order to improve the consumption of renewable energy and reduce the carbon emissions of integrated energy systems (IESs), this paper proposes an optimal operation strategy for an integrated energy system considering the coordination of electricity and hydrogen in the context of carbon [...] Read more.
In order to improve the consumption of renewable energy and reduce the carbon emissions of integrated energy systems (IESs), this paper proposes an optimal operation strategy for an integrated energy system considering the coordination of electricity and hydrogen in the context of carbon trading. The strategy makes full use of the traditional power-to-gas hydrogen production process and establishes a coupling model comprising cogeneration and carbon capture equipment, an electrolytic cell, a methane reactor, and a hydrogen fuel cell. Taking a minimum daily operating cost and minimal carbon emissions from the system as objective functions, a mixed-integer nonlinear optimal scheduling model is established. This paper designs examples based on MATLAB R2021b and uses the GUROBI solver to solve them. The results show that compared with the traditional two-stage operation process, the optimization method can reduce the daily operation cost of an IES by 26.01% and its carbon emissions by 90.32%. The results show that the operation mode of electro-hydrogen synergy can significantly reduce the carbon emissions of the system and realize a two-way flow of electro-hydrogen energy. At the same time, the addition of carbon capture equipment and the realization of carbon recycling prove the scheduling strategy’s ability to achieve a low-carbon economy of the scheduling strategy. Full article
(This article belongs to the Section Energy Systems)
17 pages, 1061 KiB  
Article
Association of miR-146a-5p and miR-21-5p with Prognostic Features in Melanomas
by Maria Naddeo, Elisabetta Broseghini, Federico Venturi, Sabina Vaccari, Barbara Corti, Martina Lambertini, Costantino Ricci, Beatrice Fontana, Giorgio Durante, Milena Pariali, Biagio Scotti, Giulia Milani, Elena Campione, Manuela Ferracin and Emy Dika
Cancers 2024, 16(9), 1688; https://doi.org/10.3390/cancers16091688 (registering DOI) - 26 Apr 2024
Abstract
Background: Cutaneous melanoma (CM) is one of the most lethal tumors among skin cancers and its incidence is rising worldwide. Recent data support the role of microRNAs (miRNAs) in melanoma carcinogenesis and their potential use as disease biomarkers. Methods: We quantified the expression [...] Read more.
Background: Cutaneous melanoma (CM) is one of the most lethal tumors among skin cancers and its incidence is rising worldwide. Recent data support the role of microRNAs (miRNAs) in melanoma carcinogenesis and their potential use as disease biomarkers. Methods: We quantified the expression of miR-146a-5p and miR-21-5p in 170 formalin-fixed paraffin embedded (FFPE) samples of CM, namely 116 superficial spreading melanoma (SSM), 26 nodular melanoma (NM), and 28 lentigo maligna melanoma (LMM). We correlated miRNA expression with specific histopathologic features including Breslow thickness (BT), histological subtype, ulceration and regression status, and mitotic index. Results: miR-146a-5p and miR-21-5p were significantly higher in NM compared to SSM and LMM. The positive correlation between miR-146a-5p and miR-21-5p expression and BT was confirmed for both miRNAs in SSM. Considering the ulceration status, we assessed that individual miR-21-5p expression was significantly higher in ulcerated CMs. The increased combined expression of the two miRNAs was strongly associated with ulceration (p = 0.0093) and higher mitotic rate (≥1/mm2) (p = 0.0005). We demonstrated that the combination of two-miRNA expression and prognostic features (BT and ulceration) can better differentiate cutaneous melanoma prognostic groups, considering overall survival and time-to-relapse clinical outcomes. Specifically, miRNA expression can further stratify prognostic groups among patients with BT ≥ 0.8 mm but without ulceration. Our findings provide further insights into the characterization of CM with specific prognostic features. The graphical abstract was created with BioRender.com. Full article
(This article belongs to the Special Issue Melanoma: Clinical Trials and Translational Research)
16 pages, 1066 KiB  
Article
Development of Attenuated Viruses for Effective Protection against Pepper Veinal Mottle Virus in Tomato Crops
by Guan-Da Wang, Chian-Chi Lin and Tsung-Chi Chen
Viruses 2024, 16(5), 687; https://doi.org/10.3390/v16050687 (registering DOI) - 26 Apr 2024
Abstract
Tomato (Solanum lycopersicum) is the most important vegetable and fruit crop in the family Solanaceae worldwide. Numerous pests and pathogens, especially viruses, severely affect tomato production, causing immeasurable market losses. In Taiwan, the cultivation of tomato crops is mainly threatened by [...] Read more.
Tomato (Solanum lycopersicum) is the most important vegetable and fruit crop in the family Solanaceae worldwide. Numerous pests and pathogens, especially viruses, severely affect tomato production, causing immeasurable market losses. In Taiwan, the cultivation of tomato crops is mainly threatened by insect-borne viruses, among which pepper veinal mottle virus (PVMV) is one of the most prevalent. PVMV is a member of the genus Potyvirus of the family Potyviridae and is non-persistently transmitted by aphids. Its infection significantly reduces tomato fruit yield and quality. So far, no PVMV-resistant tomato lines are available. In this study, we performed nitrite-induced mutagenesis of the PVMV tomato isolate Tn to generate attenuated PVMV mutants. PVMV Tn causes necrotic lesions in Chenopodium quinoa leaves and severe mosaic and wilting in Nicotiana benthamiana plants. After nitrite treatment, three attenuated PVMV mutants, m4-8, m10-1, and m10-11, were selected while inducing milder responses to C. quinoa and N. benthamiana with lower accumulation in tomato plants. In greenhouse tests, the three mutants showed different degrees of cross-protection against wild-type PVMV Tn. m4-8 showed the highest protective efficacy against PVMV Tn in N. benthamiana and tomato plants, 100% and 97.9%, respectively. A whole-genome sequence comparison of PVMV Tn and m4-8 revealed that 20 nucleotide substitutions occurred in the m4-8 genome, resulting in 18 amino acid changes. Our results suggest that m4-8 has excellent potential to protect tomato crops from PVMV. The application of m4-8 in protecting other Solanaceae crops, such as peppers, will be studied in the future. Full article
(This article belongs to the Special Issue Crop Resistance to Viral Infections)
22 pages, 2490 KiB  
Article
Feature Matching of Microsecond-Pulsed Magnetic Fields Combined with Fe3O4 Particles for Killing A375 Melanoma Cells
by Yan Mi, Meng-Nan Zhang, Chi Ma, Wei Zheng and Fei Teng
Biomolecules 2024, 14(5), 521; https://doi.org/10.3390/biom14050521 (registering DOI) - 26 Apr 2024
Abstract
The combination of magnetic fields and magnetic nanoparticles (MNPs) to kill cancer cells by magneto-mechanical force represents a novel therapy, offering advantages such as non-invasiveness, among others. Pulsed magnetic fields (PMFs) hold promise for application in this therapy due to advantages such as [...] Read more.
The combination of magnetic fields and magnetic nanoparticles (MNPs) to kill cancer cells by magneto-mechanical force represents a novel therapy, offering advantages such as non-invasiveness, among others. Pulsed magnetic fields (PMFs) hold promise for application in this therapy due to advantages such as easily adjustable parameters; however, they suffer from the drawback of narrow pulse width. In order to fully exploit the potential of PMFs and MNPs in this therapy, while maximizing therapeutic efficacy within the constraints of the narrow pulse width, a feature-matching theory is proposed, encompassing the matching of three aspects: (1) MNP volume and critical volume of Brownian relaxation, (2) relaxation time and pulse width, and (3) MNP shape and the intermittence of PMF. In the theory, a microsecond-PMF generator was developed, and four kinds of MNPs were selected for in vitro cell experiments. The results demonstrate that the killing rate of the experimental group meeting the requirements of the theory is at least 18% higher than the control group. This validates the accuracy of our theory and provides valuable guidance for the further application of PMFs in this therapy. Full article
(This article belongs to the Special Issue Advanced Nanotechnology for Health and Diseases)
15 pages, 1686 KiB  
Article
Improving the Hydrodynamic Performance of Underwater Tags for Blue Shark Monitoring
by José Azevedo, Violeta Carvalho, Tiago Bartolomeu, Ana Arieira, Senhorinha F. Teixeira and José C. Teixeira
Inventions 2024, 9(3), 48; https://doi.org/10.3390/inventions9030048 (registering DOI) - 26 Apr 2024
Abstract
The use of tag devices in marine environments has become indispensable in attaining a better understanding of marine life and contributing to conservation efforts. However, the successful deployment and operation of underwater tags both depend significantly on their hydrodynamic characteristics, particularly their resistance [...] Read more.
The use of tag devices in marine environments has become indispensable in attaining a better understanding of marine life and contributing to conservation efforts. However, the successful deployment and operation of underwater tags both depend significantly on their hydrodynamic characteristics, particularly their resistance to motion and stability in various environmental conditions. Herein, a comprehensive study on the hydrodynamic characteristics and optimization of an underwater tag designed for monitoring blue sharks is presented. Firstly, a validation process is conducted by comparing the computational fluid dynamics (CFD) results with the experimental data from Myring’s study, focusing on the resistance characteristics of the tag’s body and the impact of various operational conditions. Subsequently, the validated CFD model is applied to assess the hydrodynamic performance of the tag under different flow conditions, velocities, and angles of attack. Through iterative simulations, including mesh independence studies and boundary condition adjustments, the study identifies key parameters influencing the tag’s resistance and stability. Furthermore, the paper proposes and implements design modifications, including the incorporation of stabilizing fins, aimed at minimizing resistance and improving the tag’s equilibrium position. The effectiveness of these design enhancements is demonstrated through a comparative analysis of resistance and pitching moments for both preliminary and optimized tag configurations. Overall, the study provides valuable insights into the hydrodynamic behavior of underwater tags and offers practical recommendations for optimizing their design to minimize interference with the movement of tagged marine animals. Full article
20 pages, 5296 KiB  
Article
A Hybrid Index for Monitoring Burned Vegetation by Combining Image Texture Features with Vegetation Indices
by Jiahui Fan, Yunjun Yao, Qingxin Tang, Xueyi Zhang, Jia Xu, Ruiyang Yu, Lu Liu, Zijing Xie, Jing Ning and Luna Zhang
Remote Sens. 2024, 16(9), 1539; https://doi.org/10.3390/rs16091539 (registering DOI) - 26 Apr 2024
Abstract
The detection and monitoring of burned areas is crucial for vegetation recovery, loss assessment, and anomaly analysis. Although vegetation indices (VIs) have been widely used, accurate vegetation detection is challenging due to potential confusion in the spectra of different types of land cover [...] Read more.
The detection and monitoring of burned areas is crucial for vegetation recovery, loss assessment, and anomaly analysis. Although vegetation indices (VIs) have been widely used, accurate vegetation detection is challenging due to potential confusion in the spectra of different types of land cover and the interference of shadow effects caused by terrain. In this work, a novel Vegetation Anomaly Spectral Texture Index (VASTI) is proposed, which leverages the merits of both spectral and spatial texture features to identify abnormal pixels for extracting burned vegetation areas. The performance of the VASTI and its components, the Global Environmental Monitoring Index (GEMI), the Enhanced Vegetation Index (EVI), and the texture feature Autocorrelation (AC) were assessed based on a global dataset previously established, which contains 1774 pairs of samples from 10 different sites. The results illustrated that, compared with the GEMI and EVI, the VASTI improved the user’s accuracy (UA), producer’s accuracy (PA), and kappa coefficient across the ten study areas by approximately 5% to 10%. Compared to AC, the VASTI improved the accuracy of abnormal vegetation detection by 13% to 25%. The improvements were mainly caused by the fact that the incorporation of texture features can reduce spectral confusion between pixels. The innovation of the VASTI is that it considers the relationship between anomalous pixels and surrounding pixels by explicitly integrating spatial texture features with traditional spectral features. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop