Skip to main content
Log in

Interaction between sediments and basalt injections in young Gulf of California-type spreading centers

  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Zusammenfassung

Beim Übergang schmaler Ozeanbecken oder Pullapart-Becken vom Riftstadium mit Dehnung der kontinentalen Kruste zur Akkretion neuer ozeanischer Kruste kann es in den Spreading-Trögen zur Bildung von Lagergängen (Sills) innerhalb der Sedimente kommen. Injektionen nachfolgender starker magmatischer Pulse werden über und neben der Kontaktzone der zuvor gebildeten vertikalen Basaltgänge (Dikes) und Sills eingeschoben. Auf diese Weise wird ein charakteristischer Sill-Sediment-Komplex aufgebaut.

Die Mächtigkeit dieser Übergangszone zwischen dem Sheeted Dike-Komplex (seismische »Lage« 2) und dem jüngeren Sediment (seismische »Lage« 1) wird in erster Linie von der Sedimentationsrate gesteuert. Extrem hohe Sedimentationsraten, welche die Spreadingrate übertreffen, bewirken eine Auffüllung der Becken und behindern vermutlich stark den Magmenaufstieg. Bei sehr geringen Sedimentationsraten wie z. B. im Bereich mittelozeanischer Rücken breiter, reifer Ozeanbecken, extrudiert das aufsteigende Magma praktisch ohne Sedimenteinfluß am Meeresboden. Mittlere, aber immer noch relativ hohe Sedimentationsraten können Spreading-Tröge nicht auffüllen, sondern ermöglichen die Bildung von Sill-Sediment-Komplexen mit Mächtigkeiten bis zu einigen hundert Metern.

Dieses Phänomen wurde im Guaymas Becken des Golfs von Kalifornien beobachtet. Ähnliche Sill-Sediment-Komplexe können auch an den heutigen passiven Kontmentalrändern der großen Ozeane vorkommen und tragen vielleicht zum Auftreten einer »gestörten seismischen« und »magnetisch ruhigen« Zone bei. Auch aus fossilen Riftzonen und Orogen-Gürteln sind schon Beispiele für ähnliche Sill-Sediment-Komplexe bekannt.

Abstract

During the transitional stage from stretching of continental crust to accretion of new oceanic crust, the upwelhng basaltic magma in spreading troughs of narrow ocean basins and pull-apart basins may form sills in soft sediment. The injections of subsequent great magmatic pulses are empla ced next to or on top of the contact zone of the older ones. In this manner a distinctive sill-sediment complex is built up.

The thickness of this transitional zone between the sheeted dike complex (seismic layer 2) and overlying sediments (seismic layer 1) is controlled chiefly by the rate of sedimentation. Extremely high sedimentation rates surpassing the spreading rate cause filling up of the basins and hamper the rise of magma to the land surface. Very low rates, e.g. along mid-oceanic ridges of wide mature ocean basins, hardly influence the magma extruding at the sea floor. Intermediate (but comparatively still high) sedimentation rates cannot fill up the spreading troughs, but they generate sill-sediment complexes of a thickness up to a few hundred meters.

The processes leading to this phenomenon were observed in the Guaymas Basin of the Gulf of California. Sill-sediment complexes similar to those described here may occur at several sections along the present passive continental margins and may contribute to the existence of a »disturbed seismic« and »magnetic quiet« zone. Examples of such complexes were also found in ancient rift zones and orogenic belts.

Résumé

Au cours de la phase de transition entre l'extension de la croûte continentale et la formation de nouvelle croûte océanique, la montée de magma basaltique dans des bassins océaniques étroits et des bassins »pull-appart« peut conduire à la formation de sills dans les sédiments. Les puissantes injections magmatiques qui suivent se mettent en place au dessus et à côté de la zône de contact des venues plus anciennes. Ainsi peut s'édifier un complexe caractéristique de sills et de sédiments.

L'épaisseur de cette zône de transition entre le complexe de dykes (couche sismique 2) et le sédiment susjacent (couche sismique 1) dépend principalement du taux de sédimentation.

Des taux de sédimentation élevés, dépassant le taux d'ouverture, produisent le remplissage des bassins et s'opposent à la montée du magma.

Dans le cas de taux de sédimentation très bas comme par exemple dans les dorsales des bassins océaniques larges et matures, le magma s'épanche sans obstacle sur le fond de la mer. Des taux moyens, mais toutefois relativement élevés, ne peuvent pas remplir les fossés d'ouvertures océaniques; par contre, ils rendent possible la formation de complexes sills-sédiments dont l'épaisseur peut atteindre plusieurs centaines de mètres. Ce phénomène a été observés dans le bassin de Guaymas dans le Golfe de Californie.

Des complexes analogues peuvent se recontrer le long des marges continentales des grands océans et contribuer à l'existence d'une zône sismiquement perturbée et magnétiquement calme. On connaît de tels complexes dans les anciennes zônes de rift et les ceintures orogéniques.

Краткое содержание

При преобразовании у зких океанических ба ссейнов, или бассейнов Pullapart на риф товой стадии расшире ния материковой коры, при наростании новой океанической коры мо гут образовывать в не плотных седиментах трогов ра сширения жилы силлы. Последующее внедрен ие магм смещает образованные до этог о вертикальные базал ьтовые жилы — дайки — и силлы. Т о. получается характе рный силло-седиментный ко мплекс. Мощность таких перех одных зон между компл ексом Sheeted Dike (сейсмическое “поло жение” 2) и поздними седиментам и (сейсмическое “поло жение” 1) зависит в первую очер едь от скорости осадконакопления. Большая скорость нак опления осадков, прев ышающая скорость расширения, приводит к заполнени ю бассейна и, повидимом у, сильно тормозит поднятие магмы. При оч ень незначительной с корости осадконакопления, на пр.: в регионе среднеокеаническог о хребта широкого, уже с формировавшегося, океанического бассе йна, восходящая магма изливается по дну океана фактиче ски без влияния на это т процесс осадконакоп ления. Осадконакопле ние, происходящее со сред ней скоростью, при кот орой седиментых не успева ют заполнить трог рас ширения, способствует образо ванию описанных выше силло-седиментнх ком плексов с мощностью д о несколько сот метров. Этот феномен наблюда ют в бассейне Гвиама, Калифорнийского залива. Сходный компл екс находят на сегодня пассивном материковом крае бол ьших океанов; они, повидимо му, ответственны за по явление “нарушенных сейсмич еских” и “магнитно-сп окойных” зон. Подобные силло-се диментные комплексы известны также в фосс ильных рифтовых зона х и в поясах орогенов.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ballard, R. D. and vanAndel, T. H. (1977): Morphology and tectonics of the inner rift valley at lat. 36°50'N on the Mid-Atlantic Ridge. - Geol. Soc. Am. Bull.,88, 507–530.

    Google Scholar 

  • Bischoff, J. L. andHenyey, T. L. (1974): Tectonic elements of the central part of the Gulf of California.- Geol. Soc. Am. Bull.,85, 1893–1904.

    Google Scholar 

  • Bryant, W. R., Bennett, R. H. andKatherman, Ch. f. (1981): Shear strength, consolidation, porosity, and permeability of oceanic sediments. - In: Emiliani, C. (ed.): The oceanic lithosphere. The sea, 7, J. Wiley, New York, p. 1555–1616.

    Google Scholar 

  • Casey, J. F., Dewey, J. F., Fox, P. J., Karson, J. A. andRosencrantz, E. (1981): Heterogeneous nature of oceanic crust and upper mantle: a perspective from the Bay of Islands ophiolite complex. In Emiliani, C. (ed.): The oceanic lithosphere. The Sea,7, J. Wiley, New York, p. 305–338.

    Google Scholar 

  • Coleman, R. G. (1977): Minerals and Rocks, 12. Ophiolites, ancient oceanic lithosphere? Springer, Berlin-Heidelberg-New York, 229 pp.

    Google Scholar 

  • Colletta, B., Angelier, J. (1983): Tectonique cassante du nordouest mexicain et ouvertoure du Golfe de Californie. - Bull. Centre Rech. Explor. Prod. Elf-Aquitaine,7, 1, 433–441.

    Google Scholar 

  • Curray, J. R., Moore, D. G. et al. (1982): Init. Repts. DSDP, 64, Parts 1 and 2, Washington (U.S. Govt. Printing Office), 507 and 1313 pp.

    Google Scholar 

  • —, —,Kelts, K., Einsele, G. (1982): Tectonics and geological history of the passive continental margin at the tip of Baja California. InCurray, J. R., Moore, D. G. et al., Init. Repts. DSDP, 64, pt. 2, Washington (U.S. Govt. Printing Office), p. 1089–1116.

    Google Scholar 

  • Desmet, A., Gagny, Cl., Lapierre, H. andRocci, G. (1980): Organisation spatio-temporelle du complexe filonien du Troodos: Son racinement dans le chambre magmatique. InPanayiotou, A. (ed.): Ophiolites. Proc. Internat. Ophiolite Symposium, Cyprus 1979. Republic of Cyprus, Ministry of Agricult. and Natural Resources, Geol. Survey Deptm., p. 66–75.

    Google Scholar 

  • Easton, R. M. (1983): Crustal structure of rifted continental margins: Geologic constraints from the Proterozoic rocks of the Canadian Shield. - Tectonophysics,94, 371–390.

    Google Scholar 

  • Einsele, G. (1982): Mechanism of sill intrusion into soft sediment and expulsion of pore water. InCurray, J. R., Moore, D. G. et al., Init. Repts. DSDP, 64, Part 2, Washington (U.S. Govt. Printing Office), p. 1169–1176.

    Google Scholar 

  • — (1985): Basaltic sillsediment complexes in young spreading centers: genesis and significance. - Geology, 13, No. 4, 249–252.

    Google Scholar 

  • —,Gieskes, J. M., Curray, J. R., Moore, D. M. et al. (1980): Intrusion of basaltic sills into highly porous sediments, and resulting hydrothermal activity. - Nature, 283, 441–445.

    Google Scholar 

  • — andKelts, K. (1982): Pliocene and Quaternary mud turbidites in the Gulf of California: sedimentology, mass physical properties, and significance. InCurray, J. R., Moore, D. G. et al., Init. Repts. DSDP, 64, Washington (U.S. Govt. Printing Office), p. 511–528.

    Google Scholar 

  • Fox, P. J. andStroup, J. B. (1981): The plutonic foundation of the oceanic crust. In: Emiliani, C. (ed.) The oceanic lithosphère. The Sea, 7, J. Wiley, New York, p. 119–218.

    Google Scholar 

  • Fuis, G. S., Mooney, W. D., Healey, J. H., McMechan, G. A., Lutter, W. J., (1982): Crustal structure of the Imperial Valley region. U.S. Geolog. Survey, Prof. Paper 1254: The Imperial Valley, California, earthquake of October 15, 1979, p. 25–49.

  • Gass, G. (1980): The Troodos Massif: Its role in the unravelling of the ophiolite problem and its significance in the understanding of constructive plate margin processes. In:Panayiotou, A., ed., 1980, Ophiolites. Proc. Internat. Ophiolite Symp., Cyprus 1979, Republic of Cyprus, Min. Agricult. Nat. Resources, Geol. Survey Dept., p. 23–35.

    Google Scholar 

  • Gieskes, J. M., Kastner, M., Einsele, G., Kelts, K. andNimitz, J. (1982): Hydrothermal activity in the Guaymas Basin, Gulf of California: a synthesis. In:Curray, J. R., Moore, D. G. et al.: Ink. Repts. DSDP, 64, part 2, Washington (U.S. Govt. Printing Office), p. 1159–1167.

    Google Scholar 

  • Gudmundsson, A. (1983): Form and dimensions of dykes in eastern Iceland. - Tectonophysics,95, 295–307.

    Google Scholar 

  • Hutchinson, D. R., Grow, J. A., Klitgord, K. D., Swift, B. A. (1982): Deep structure and evolution of the Carolina Trough. In:Watkins, J. S. andDrake, C. L. (eds.), Studies in continental margin geology. - Am. Assoc. Petrol. Geol., Memoir34, 129–152.

    Google Scholar 

  • Karig, D. E. (1982): Deformation in the forearc: implications for mountain belts. In:Hsü, K. J. (ed.), Mountain building processes. - P. 59–71. Academic Press, London etc.

    Google Scholar 

  • Kelts, K. (1981): A comparison of some aspects of sedimentation and translational tectonics from the Gulf of California and the Mesozoic Tethys, Northern Penninic Margin. - Eclogae geol. Helv., 74/2, 317–338.

    Google Scholar 

  • — (1982): Petrology of hydrothermally metamorphosed sediments at Deep Sea Drilling Site 477, southern Guaymas rift, Gulf of California. In:Curray, J. R., Moore, D. G. et al.: Ink. Repts. DSDP, 64, part 2, Washington (U.S. Govt. Printing Office), p. 1123–1136.

    Google Scholar 

  • Klitgord, K. D. andBehrendt, C. (1979): Basin structure of the U.S. Atlantic margin. In:Watkins, J. S., Montadert, L. andDickerson, P. W. (eds.), Geological and geophysical investigations of continental margins. Americ. Assoc. Petrol. Geol., Memoir29, 85–112.

    Google Scholar 

  • Leggett, J. K., ed. (1982): Trench-forearc geology: sedimentation and tectonics on modern and ancient acitve plate margins. - Publ. for Geol. Soc. London, Blackwell, Oxford, 576 p.

    Google Scholar 

  • Lewis, B. T. R., Robinson, P. et al. (1983): Ink. Repts. DSDP, 65, Washington (U.S. Govt. Printing Office), 752 pp.

    Google Scholar 

  • Lonsdale, P. andLawver, L. A. (1980): Immature plate boundary zones studied with a submersible in the Gulf of California. - Geol. Soc. Am. Bull.91, 555–569.

    Google Scholar 

  • Mann, P., Hempton, M. R., Bradley, D. C. andBurke, K. (1983): Development of pull-apart basins. J. Geology,91, 529–554.

    Google Scholar 

  • Mattauer, M. (1980): Réflexion sur la géométrie de la fracturation des zones d'accrétion.- Bull. Soc. géol. France. 1980, (7), No. 6, p. 975–979.

    Google Scholar 

  • McBirney, A. R. (1963): Factors governing the nature of submarine volcanism. - Bull. Volcanologique,26, 455–469.

    Google Scholar 

  • Moore, D. G. (1973): Plate-edge deformation and crustal growth, gulf of California structural province. - Geol. Soc. Amer. Bull.84, 1883–1906.

    Google Scholar 

  • — andCurray, J. R. (1982): Geologic and tectonic history of the Gulf of California. In:Curray, J. R., Moore, D. G. et al.: Init. Repts. DSDP, 64, part 2, Washington (U.S. Govt. Printing Office), p. 1279–1294.

    Google Scholar 

  • Pilger, A. &Rösler, A., eds. (1975): Afar Depression of Ethiopia. - Inter-Union Comm. on Geodynamics, Scient. Rep. No. 14, Schweizerbart, Stuttgart, 416 pp.

    Google Scholar 

  • Reading, H. G. (1980): Characteristics and recognition of strike-slip fault systems. In:Ballance, P. F. andReading, H. G. (eds.), Sedimentation in oblique-slip mobile zones. Internat. Assoc. Sediment., Spec. Publ.4, 7–26.

  • Robinson, P. T., Elders, W. A., Muffler, L. J. P. (1976): Quaternary volcanism in the Salton Sea geothermal field, Imperial Valley, California. - Geol. Soc. America Bull.,87, 347–360.

    Google Scholar 

  • Saunders, A. D., Fornari, D. J., Joron, J. L., Tarney, J. andTrenil, M. (1982): Geochemistry of basic igneous rocks, Gulf of California, Deep Sea Drilling Project Leg 64. In:Curray, J. R., Moore, D. G. et al.: Init. Repts. DSDP, 64, part 2, Washington (U.S. Govt. Printing Office), p. 595–642.

    Google Scholar 

  • Schikhalibeili, E. Sh., ed. (1984): Summary Guidebook, excursions 011, 015, 018, Azerbaijan. 27th Internat. Geol. Congress, Moscow, 160 p.

  • Sharman, G. F. (1976): The plate tectonic evolution of the Gulf of California. - Diss. Univ. of California, Dept. Earth Sciences, San Diego, 94 pp.

    Google Scholar 

  • Sheridan, R. E. (1981): Recent Research on passive continental margins. - Soc. Econ. Paleont. and Mineralog., Spec. Publ. No.32, p. 39–55.

    Google Scholar 

  • Simoneit, B. R. T., Summerhayes, C. P. andMeyers, P. A. (1982): Sources, preservation, and maturation of organic matter in Pliocene and Quaternary sediments of the Gulf of California: a synthesis of organic geochemical studies from Deep Sea Drilling Project Leg 64. In:Curray, J. R., Moore, D. G. et al.: Init. Repts. DSDP, 64, part 2, Washington (U.S. Govt. Printing Office), p. 939–951.

    Google Scholar 

  • Talwani, M., Mutter, J., Houtz, R., andKönig, M. (1979): The crustal structure and evolution of the area underlying the magnetic quiet zone on the margin south of Australia. In:Watkins, J. S., Montadert, L. andDickerson, P. W. (eds.), Geological and geophysical investigations of continental margins. Americ. Assoc. Petrol. Geol., Memoir29, 151–175.

    Google Scholar 

  • von Huene, R. (1981): Review of early results from drilling of the IPOD-1 active margin transects across the Japan, Mariana, and Middle-America convergent margins. - Soc. Econom. Paleont. and Mineralog., Spec. Publ.32, 57–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einsele, G. Interaction between sediments and basalt injections in young Gulf of California-type spreading centers. Geol Rundsch 75, 197–208 (1986). https://doi.org/10.1007/BF01770188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01770188

Keywords

Navigation