Skip to main content
Log in

Phylogenetic evidence for multiple Alu source genes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

A member of the young PV Alu sub-family is detected in chimpanzee DNA showing that the PV subfamily is not specific to human DNA. This particular Alu is absent from the orthologous loci in both human and gorilla DNAs, indicating that PV subfamily members transposed within the chimpanzee lineage following the divergence of chimpanzee from both gorilla and human. These findings and previous reports describing the transpositional activity of other Alu sequences within the human, gorilla, and chimpanzee lineages provide phylogenetic evidence for the existence of multiple Alu source genes. Sequences surrounding this particular Alu resemble known transcriptional control elements associated with RNA polymerase III, suggesting a mechanism by which cis-acting elements might be acquired upon retrotransposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batzer MA, Deininger PL (1991) A human-specific subfamily of Alu sequences. Genomics 9:481–487

    Google Scholar 

  • Batzer MA, Kilroy GE, Richard PE, Shaikh TH, Desselle TD, Hoppens CL, Deininger PL (1990) Structure and variability of recently inserted Alu family members. Nucleic Acids Res 18:6793–6798

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    Google Scholar 

  • Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Science 161:529–540

    Google Scholar 

  • Britten RJ, Baron WF, Stout DB, Davidson EH (1988) Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci USA 85:4770–4774

    Google Scholar 

  • Cozzarelli NR, Gerrard SP, Schlissel M, Brown DD, Bogenhagen DF (1983) Purified RNA polymerase III accurately and efficiently terminates transcription of 5S RNA genes. Cell 34:829–835

    Google Scholar 

  • Deininger PL, Slagel VK (1988) Recently amplified Alu members share a common parental Alu sequence. Mol Cell Biol 8:4566–4569

    Google Scholar 

  • Economou-Pachnis A, Tsichlis PN (1985) Insertion of an Alu SINE in the human homologue of the Mlvi-2 locus. Nucleic Acids Res 13:8379–8387

    Google Scholar 

  • Fan W, Kasahara M, Gutknecht J, Klein D, Mayer WE, Jonker M, Klein J (1989) Shared Class II MHC polymorphisms between humans and chimpanzees. Hum Immunol 26:107–121

    Google Scholar 

  • Friezner Degen SJ, Rajput B, Reich E (1986) The human tissue plasminogen activator gene. J Biol Chem 261:6972–6985

    Google Scholar 

  • Gibbs PE, Zielinski R, Boyd C, Dugaiczyk A (1987) Structure, polymorphism, and novel repeated DNA elements revealed by a complete sequence of the human alpha-fetoprotein gene. Biochemistry 26:1332–1343

    Google Scholar 

  • Jagadeeswaran P, Forget BG, Weissman SM (1981) Short interspersed repetitive DNA elements in eucaryotes: transposable DNA elements generated by reverse transcription of RNA Pol III transcripts? Cell 26:141–142

    Google Scholar 

  • Jurka J, Smith T (1988) A fundamental division in the Alu family of repeated sequences. Proc Natl Acad Sci USA 85:4775–4778

    Google Scholar 

  • Labuda D, Striker G (1989) Sequence conservation in Alu evolution. Nucleic Acids Res 17:2477–2491

    Google Scholar 

  • Lehrman MA, Goldstein JL, Russel D, Brown MS (1987) Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with hypercholesterolemia. Cell 48:827–835

    Google Scholar 

  • Lobo SM, Hernandez N (1989) A 76 by mutation converts a human RNA polymerase II snRNA promoter into an RNA polymerase III promoter. Cell 58:55–57

    Google Scholar 

  • Maeda N, Bliska JB, Smithies O (1983) Recombination and balanced chromosome polymorphism suggested by DNA sequences 5′ to the human delta globin gene. Proc Natl Acad Sci USA 80:5012–5016

    Google Scholar 

  • Maeda N, Wu C-I, Bliska J, Reneke J (1988) Molecular evolution of intergenic DNA in higher primates: pattern of DNA changes, molecular clock and evolution of repetitive sequences. Mol Biol Evol 5:1–20

    Google Scholar 

  • Maraia R(1991) The subset of mouse B1 (Alu equivalent) sequences expressed as small processed cytoplasmic transcripts. Nucleic Acids Res 19:5695–5702

    Google Scholar 

  • Margottin F, Dujardin G, Gerard M, Egly JM, Huet J, Sentenac A (1991) Participation of the TATA factor in transcription of the yeast U6 gene by RNA polymerase. Science 251:424–426

    Google Scholar 

  • Matera AG, Hellmann U, Hintz MF, Schmid CW (1990a) Recently transposed Alu repeats result from multiple source genes. Nucleic Acids Res 18:6019–6023

    Google Scholar 

  • Matera AG, Hellmann U, Schmid CW (1990b) A transpositionally and transcriptionally competent Alu subfamily. Mol Cell Biol 10:5424–5432

    Google Scholar 

  • Mietus-Snyder M, Charmley P, Korf B, Ladias JAA, Gatti RA, Karathanasis SK (1990) Genetic linkage of the human apolipoprotein AI-CIII-AIV gene cluster and the neural cell adhesion molecule (NCAM) gene. Genomics 7:63–67

    Google Scholar 

  • Muratani K, Hada T, Yamamoto Y, Kaneko T, Shigeto Y, Ohue T, Furuyama J, Higashino K (1991) Inactivation of the cholinesterase gene by Alu insertion: possible mechanism for human gene transposition. Proc Natl Acad Sci USA 88:11315–11319

    Google Scholar 

  • Murphy S, Di Liegro C, Melli M (1987) The in vitro transcription of the 7SK RNA gene by RNA polymerase III is dependent only on the presence of an upstream promoter. Cell 51: 81–87

    Google Scholar 

  • Platt T (1986) Transcription termination and the regulation of gene expression. Annu Rev Biochem 55:339–372

    Google Scholar 

  • Quentin Y (1989) Successive waves of fixation of B1 variants in rodent lineage history. J Mol Evol 28:299–305

    Google Scholar 

  • Ryan SC, Dugaiczyk A (1989) Newly arisen DNA repeats in primate phylogeny. Proc Natl Acad Sci USA 86:9360–9364

    Google Scholar 

  • Schmid CW (1991) Human Alu subfamilies and their methylation revealed by blot hybridization. Nucleic Acids Res 19: 5613–5617

    Google Scholar 

  • Schmid CW, Shen CKJ (1985) The evolution of interspersed repetitive DNA sequences in mammals and other vertebrates. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 323–358

    Google Scholar 

  • Schmid CW, Deka N, Matera AG (1990) Repetitive human DNA: the shape of things to come. In: Adolph KW (ed) Chromosomes: eukaryotic, prokaryotic and viral. CRC Press, Boca Raton FL, pp 3–29

    Google Scholar 

  • Shen MR, Batzer MA, Deininger PL (1991) Evolution of the master Alu gene(s). J Mol Evol 33:311–320

    Google Scholar 

  • Sibley CG, Alhquist JE (1990) DNA hybridization evidence of hominoid phylogeny: a reanalysis of the data. J Mol Evol 30: 202–236

    Google Scholar 

  • Slagel V, Flemington E, Traina-Dorge V, Bradshaw H Jr, Deininger PL (1987) Clustering and sub-family relationships of the Alu family in the human genome. Mol Biol Evol 4:19–29

    Google Scholar 

  • Stoppa-Lyonnet D, Carter PE, Meo T, Tose M (1990) Clusters of intragenic Alu repeats predispose the human C 1 inhibitor locus to deleterious rearrangements. Proc Natl Acad Sci USA 87:1551–1555

    Google Scholar 

  • Trabuchet G, Chelbloume Y, Savatier P, Lachuer J, Faure C, Verdier G, Nigon VM (1987) Recent insertion of an Alu sequence in the beta-globin cluster of the gorilla. J Mol Evol 25:288–291

    Google Scholar 

  • Ullu E, Weiner AM (1984) Human genes and pseudogenes for the 7SL RNA component of the signal recognition particle. EMBO J 3:3303

    Google Scholar 

  • Ullu E, Weiner AM (1985) Upstream sequences modulate the internal promoter of the human 7SL RNA gene. Nature 318: 371–374

    Google Scholar 

  • Van Arsdell SW, Denison RA, Bernstein LB, Weiner AM (1981) Direct repeats flank three small nuclear DNA pseudogenes in the human genome. Cell 26:11–17

    Google Scholar 

  • Wallace MR, Andersen LB, Saulino AM, Gegory PE, Glover TW, Collins FS (1991) A de novo Alu insertion results in neurofibromatosis type 1. Nature 353:864–866

    Google Scholar 

  • Weiner AM, Deininger PL, Efstratiadis AE (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem 55:631–662

    Google Scholar 

  • Willard C, Nguyen HT, Schmid CW (1987) Existence ofat least three distinct Alu subfamilies. J Mol Biol 26:180–186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: C. W. Schmid

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leeflang, E.P., Liu, WM., Hashimoto, C. et al. Phylogenetic evidence for multiple Alu source genes. J Mol Evol 35, 7–16 (1992). https://doi.org/10.1007/BF00160256

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160256

Key words

Navigation