Skip to main content
Log in

Nuclear Chemical Effects in the Paragenetic Mineral Association Based on Polycrase

  • Published:
Radiochemistry Aims and scope

Abstract

A natural polymineral compound in which the major uranium-containing mineral is polycrase (Ti- Ta-niobate) described by the formula АВ2О6 was chosen as a model for studying the behavior of recoil atoms produced by α-decay of actinides. Polycrase, despite its metamict structure, is characterized by the following features distinguishing it from Ti-Ta-niobates of the formula А2В2О7 (pyrochlore and betafite): (1) 1/3 of uranium atoms preserve the initial valence state, U(IV); (2) the U(IV) fraction is characterized by the isotope activity ratio AR(234U/238U) close to that at secular equilibrium; (3) the uranium atoms that underwent oxidation “memorize” their radiogenic origin; as a result, the AR(234U/238U) ratio in the U(VI) fraction is 0.90, and in the most altered part of the mineral it decreases to 0.77; (4) the parent uranium is relatively stable in the metamict structure of polycrase: The half-leaching time for 238U atoms is 2 times longer than that in betafite, zircon, or sphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. GOST (State Standard) R 50926–96: Solidified High-Level Waste. General Technical Requirements, Moscow: Izd. Standartov, 1996.

  2. Chemical durability and related properties of solidified high-level waste forms, Tech. Rep. Ser., Vienna: IAEA, 1985, no. 257.

  3. ASTM C 1220-98: Standard Test Method for Static Leaching of Monolithic Waste Forms for Disposal of Radioactive Waste, ASTM, 1998.

  4. GOST (State Standard) R 52126–2003: Radioactive Waste. Determination of the Chemical Durability of Solidified High-Level Waste by Prolonged Leaching, Moscow: Izd. Standartov, 2003.

  5. Hart, K.P., Vance, E.R., Stanojevic, R., and Day, R.A., Mater. Res. Soc. Symp. Proc., 1999, vol. 556, pp. 173–180.

    Article  CAS  Google Scholar 

  6. Pierce, E.M., McGrail, B.P., Martin, P.F., et al., Appl. Geochem., 2007, vol. 22, no. 9, pp. 1841–1859.

    Article  CAS  Google Scholar 

  7. Jantzen, C.M., Kaplan, D.I., Bibler, N.E., et al., J. Nucl. Mater., 2008, vol. 378, no. 3, pp. 244–256.

    Article  CAS  Google Scholar 

  8. Ewing, R.C., Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste: NUREG/CP-0147, Kovach, L.A. and Murphy, W.M., Eds., 1995, p. 29.

  9. Lumpkin, G.R., J. Nucl. Mater., 2001, vol. 289, nos. 1–2, pp. 136–166.

    Article  CAS  Google Scholar 

  10. Lumpkin, G.R., in Comprehensive Nuclear Materials, vol. 5: Material Performance and Corrosion/Waste Materials, 2012, pp. 563–600.

    Book  Google Scholar 

  11. Eyal, Y. and Olander, D.R., Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 1867–1877.

    Article  CAS  Google Scholar 

  12. Olander, D.R. and Eyal, Y., Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 1879–1887.

    Article  CAS  Google Scholar 

  13. Olander, D.R. and Eyal, Y., Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 1889–1896.

    Article  CAS  Google Scholar 

  14. Burakov, B.E., Ojovan, M.I., and Lee, W.E., Crystalline Materials for Actinide Immobilisation, London: Imperial College, 2011.

    Book  Google Scholar 

  15. Andersen, M.B., Erel, Y., and Bourdon, B., Geochim. Cosmochim. Acta, 2009, vol. 73, no. 14, pp. 4124–4141.

    Article  CAS  Google Scholar 

  16. Bogdanov, R.V., Puchkova, E.V., Parnikov, N.G., and Sergeev, A.S., Radiochemistry, 2011, vol. 53, no. 6, pp. 651–661.

    Article  CAS  Google Scholar 

  17. Bogdanov, R.V., Batrakov, Y.F., Puchkova, E.V., et al., Mater. Res. Soc. Symp. Proc., 2002, vol. 713, pp. 295–301.

    Article  CAS  Google Scholar 

  18. Deditius, A.P., (Skomurski) Smith, F.N., Utsunomiya, S., and Ewing, R.C., Geochim. Cosmochim. Acta, 2015, vol. 150, pp. 226–252.

    Article  CAS  Google Scholar 

  19. Müller, H., in Proc. Conf. on the Treatment and Containment of Radioactive Waste and Its Disposal in Arid Environments (Radwaste R.S.A. 86), Cape Town (South Africa), Sept. 7–12, 1986, pp. 607–614.

    Google Scholar 

  20. Fleischer, M., Glossary of Mineral Species, Mineralogical Record, 1983, 5th ed.

    Google Scholar 

  21. The Encyclopedia of Mineralogy, Frye, K., Ed., Boston: Springer, 1981.

  22. Greegor, R.B., Lytle, F.W., Ewing, R.C., and Harker, R.F., Nucl. Instrum. Meth. Phys. Res. B, 1984, vol. 1, pp. 587–594.

    Article  Google Scholar 

  23. Greegor, R.B., Lytle, F.W., Chakoumakos, B.C., et al., Mater. Res. Soc. Symp. Proc., 1989, vol. 127, pp. 261–268.

    Article  CAS  Google Scholar 

  24. Nakai, I., Akimoto, J., Imafuku, M., et al., Phys. Chem. Miner., 1987, vol. 15, pp. 113–124.

    Article  CAS  Google Scholar 

  25. Lumpkin, G.R., Ewing, R.C., and Foltyn, E.M., J. Nucl. Mater., 1986, vol. 139, no. 2, pp. 113–120.

    Article  CAS  Google Scholar 

  26. Bogdanov, R.V., Skriplev, M.I., Petrunin, A.A., and Titov, A.V., J. Nucl. Mater., 2013, vol. 440, nos. 1–3, pp. 440–444.

    Article  CAS  Google Scholar 

  27. Skriplev, M.I., Bogdanov, R.V., and Schwink, L.R., Appl. Radiat. Isot., 2017, vol. 119, pp. 1–5.

    Article  CAS  Google Scholar 

  28. Bogdanov, R.V. and Khrisanfov, Yu.V., Certificate on State Registration of Computer Program no. 2 017 611 127, Jan. 19, 2017.

    Google Scholar 

  29. Cao, Q., Isakov, A.I., Liu, X., et al., Mater. Res. Soc. Symp. Proc., 2014, vol. 1665, pp. 313–318.

    Google Scholar 

  30. Cao, Q., Krivovichev, S.V., Burakov, B.E., and Liu, X., J. Radioanal. Nucl. Chem., 2015, vol. 304, pp. 251–255.

    Article  CAS  Google Scholar 

  31. Soboleva, M.V. and Pudovkina, I.A., Mineraly urana: Spravochnik (Uranium Minerals: Handbook), Moscow, 1957.

    Google Scholar 

  32. Bulakh, A.G., Zolotarev, A.A., and Krivovichev, V.G., Struktura, izomorfizm, formuly, klassifikatsiya mineralov (Structure, Isomorphism, Formulas, and Classification of Minerals), St. Petersburg: Sankt-Peterb. Gos. Univ., 2014.

    Google Scholar 

  33. Lumpkin, G.R. and Ewing, R.C., Am. Mineral., 1996, vol. 81, pp. 1237–1248.

    Article  CAS  Google Scholar 

  34. Chalov, P.I., Izotopnoe fraktsionirovanie prirodnogo urana (Isotope Fractionation of Natural Uranium), Frunze: Ilim, 1975.

    Google Scholar 

  35. Bogdanov, R.V., Batrakov, Yu.F., Puchkova, E.V., and Sergeev, A.S., Radiochemistry, 1999, vol. 41, no. 5, pp. 395–419.

    Google Scholar 

  36. Puchkova, E.V., Bogdanov, R.V., and Gieré, R., Am. Mineral., 2016, vol. 101, pp. 1884–1891.

    Article  Google Scholar 

  37. Goronovskii, I.T., Nazarenko, Yu.P., and Nekryach, E.F., Kratkii spravochnik po khimii (Concise Handbook of Chemistry), Kiev: Naukova Dumka, 1987.

    Google Scholar 

  38. Fluegge, S. and Zimens, K.E., Z. Phys. Chem., 1939, vol. 2, p. 181.

    Google Scholar 

  39. Hashimoto, T., Aoyagi, Y., Kudo, H., and Sotobayashi, T., J. Radioanal. Nucl. Chem., 1985, vol. 90, no. 2, pp. 415–438.

    Article  CAS  Google Scholar 

  40. Cherdyntsev, V.V., Uran-234 (Uranium-234), Moscow: Atomizdat, 1969.

    Google Scholar 

  41. Shirvington, P.J., Geochim. Cosmochim. Acta, 1983, vol. 47, pp. 403–412.

    Article  CAS  Google Scholar 

  42. Sheng, Z.Z. and Kuroda, P.K., Radiochim. Acta, 1986, vol. 39, pp. 131–138.

    Article  CAS  Google Scholar 

  43. Sheng, Z.Z. and Kuroda, P.K., Radiochim. Acta, 1986, vol. 40, pp. 95–102.

    Article  CAS  Google Scholar 

  44. Suksi, J. and Rasilainen, K., Radiochim. Acta, 1996, vol. 74, pp. 297–302.

    Article  CAS  Google Scholar 

  45. Fleischer, R.L., Nucl. Tracks, 1982, vol. 6, pp. 35–42.

    CAS  Google Scholar 

  46. Latham, A.G. and Schwarcz, H.P., Appl. Geochem., 1987, vol. 2, no. 1, pp. 55–65.

    Article  CAS  Google Scholar 

  47. Latham, A.G. and Schwarcz, H.P., Appl. Geochem., 1987, vol. 2, no. 1, pp. 67–71.

    Article  CAS  Google Scholar 

  48. Bogdanov, R.V., Batrakov, Yu.F., Puchkova, E.V., and Sergeev, A.S., Geochem. Int., 2002, vol. 40, no. 11, pp. 1167–1177.

    Google Scholar 

  49. Eyal, Y. and Fleischer, R.L., Nature, 1985, vol. 314, pp. 518–520.

    Article  CAS  Google Scholar 

  50. Eyal, Y. and Fleischer, R.L., Geochim. Cosmochim. Acta, 1985, vol. 49, pp. 1155–1164.

    Article  CAS  Google Scholar 

  51. Eyal, Y., Lumpkin, G.R., and Ewing, R.C., Mater. Res. Soc. Symp. Proc., 1985, vol. 50, p. 379.

    Article  Google Scholar 

  52. Hosseinpour Khanmiri, M., Yanson, S.Yu., Fomin, E.V., et al., Phys. Chem. Miner. (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Bogdanov.

Additional information

Original Russian Text © M. Hosseinpour Khanmiri, R.V. Bogdanov, 2018, published in Radiokhimiya, 2018, Vol. 60, No. 1, pp. 74–85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinpour Khanmiri, M., Bogdanov, R.V. Nuclear Chemical Effects in the Paragenetic Mineral Association Based on Polycrase. Radiochemistry 60, 79–91 (2018). https://doi.org/10.1134/S1066362218010137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362218010137

Keywords

Navigation