Skip to main content
Log in

Synthesis of 99mTc-Radiolabeled Uridine as a Potential Tumor Imaging Agent

  • Published:
Radiochemistry Aims and scope

Abstract

Uridine, a pyrimidine nucleoside essential for the synthesis of RNA and biomembranes, was radiolabeled with 99mTc to obtain a potential tumor imaging agent. The maximal radiochemical yield of about 96.5%, as determined by paper chromatography and instant thin-layer chromatography, was reached under the following optimum conditions: 1 mg of uridine, 20 μg of SnCl2·2H2O as reducing agent, 20 mg of mannitol as a stabilizer, and pH 8. 99mTc-uridine is stable in vitro at room temperature for up to 6 h post labeling. The biodistrbution study in tumor-bearing mice shows high target-to-nontarget ratio. These results match with the high docking score of the complex on uridine phosphorylase enzyme. 99mTc-uridine shows promise as a tumor imaging agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cansev, M., Brain Res. Rev., 2006, vol. 52, no. 2, pp. 389–397.

    Article  CAS  Google Scholar 

  2. Wurtman, R.J., Ulus, I.H., Cansev, M., et al., Brain Res., 2006, vol. 1088, no. 1, pp. 83–92.

    Article  CAS  Google Scholar 

  3. De Jong, R.M., Willemsen, A.T.M., Slart, R.H.J.A., et al., Eur. J. Nucl. Med. Mol. Imag., 2005, vol. 32, p. 443.

    Article  Google Scholar 

  4. Kanzaki, A., Takebayashi, Y., Bando, H., et al., Int. J. Cancer, 2002, vol. 97, pp. 631–635.

    Article  CAS  Google Scholar 

  5. Deliang, C., Amy, Z., James, M.C., et al., Mol. Cancer Ther., 2011, vol. 10, no. 12, pp. 2330–2339.

    Article  Google Scholar 

  6. Watanabe, S. and Uchida, T., Biochem. Biophys. Res. Commun., 1995, vol. 216, pp. 265–272.

    Article  CAS  Google Scholar 

  7. Yamamoto, T., Koyama, H., Kurajoh, M., et al., Clin. Chim. Acta, 2011, vol. 412, nos. 19–20, pp. 1712–1724.

    Article  CAS  Google Scholar 

  8. Pizzorno, G., Cao, D., Leffert, J.J., et al., Biochim. Biophys. Acta, 2002, vol. 1587, pp. 133–144.

    Article  CAS  Google Scholar 

  9. Strauss, A.D., Strauss, L.G., Schlag, P., et al., J. Nucl. Med., 1998, vol. 39, pp. 1197–1202.

    Google Scholar 

  10. Presant, C.A., Wolf, W., Waluch, V., et al., Lancet, 1994, vol. 343, pp. 1184–1187.

    Article  CAS  Google Scholar 

  11. Kumar, S., Kumar, M.A., Chhikara, B.S., et al., Hellen. J. Nucl. Med., 2008, vol. 11, no. 2, pp. 91–95.

    Google Scholar 

  12. Desbouis, D., Struthers, H., Spiwok, V., et al., J. Med. Chem., 2008, vol. 51, no. 21, pp. 6689–6698.

    Article  CAS  Google Scholar 

  13. Vincent, P.C. and Nicholls, A., Cancer Res., 1967, vol. 27, no. 6, part 1, pp. 1058–1065.

    CAS  Google Scholar 

  14. Brooks, B.R., Brooks, C.L., MacKerell, A.D., et al., J. Comput. Chem., 2009, vol. 30, no. 10, pp. 1545–1614.

    Article  CAS  Google Scholar 

  15. Savonova, T.S., Mikhailov, S.N., Monuvera, V.A., et al., Acta Crystallogr., Sect. D, 2014, vol. 70, pp. 3310–3319.

    Article  Google Scholar 

  16. Banerjee, S.R., Maresca, K.P., Stephenson, K.A., et al., Bioconjugate Chem., 2005, vol. 16, pp. 885–902.

    Article  CAS  Google Scholar 

  17. Khairul, I., Shaikh, M.M.A., and Jahan, A.K., Cancer Biol. Med., 2012, vol. 9, no. 4, pp. 242–247.

    Google Scholar 

  18. Nabila, Z., Enaiat, K., and Fatma, Z.S., World J. Pharm. Res., 2015, vol. 4, no. 4, pp. 272–286.

    Google Scholar 

  19. Arulsudar, N., Subramanian, N., Mishra, P., et al., AAPS Pharm. Sci., 2004, vol. 6, no. 1, pp. 45–56.

    Article  Google Scholar 

  20. Rhodes, B.A., Semin. Nucl. Med., 1974, vol. 4, p. 281.

    Article  CAS  Google Scholar 

  21. John, H.B. and John, M.B., Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry, USA: Lippincott Williams and Wilkins, 2004, 11th ed.

    Google Scholar 

  22. Lambrecht, Y., Durkan, K., and Unak, P., J. Radioanal. Nucl. Chem., 2008, vol. 275, no. 1, pp. 161–164.

    Article  CAS  Google Scholar 

  23. Azuma, M. and Takahashi, J., US Patent 5 015 462 A, 1991.

    Google Scholar 

  24. Elmaleh, D.R. and Babich, J.W., US Patent 6 187 286 B1, 2001.

    Google Scholar 

  25. Zolle, I., Technetium-99m Radiopharmaceuticals: Preparation and Quality Control in Nuclear Medicine, Berlin: Springer, 2007.

    Book  Google Scholar 

  26. Lomozik, L. and Jastrzab, R., J. Solution Chem., 2007, vol. 36, pp. 357–374.

    Article  CAS  Google Scholar 

  27. Vieira, M.R., Modern Trends in Radiopharmaceuticals for Diagnosis and Therapy, Vienna: IAEA, 1998.

    Google Scholar 

  28. Johan, V.V., Jan, B.S., and Sandra, L., EXCLI J., 2014, vol. 13, pp. 300–322.

    Google Scholar 

  29. Von Brostel, R. and Bamat, B.M., US Patent 5 583 117, 1996.

    Google Scholar 

  30. Liu, T., Gan, Q., and Zhang, J., Chem. Biol. Drug Des., 2017, vol. 89, pp. 277–284.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Talaat.

Additional information

Published in Russian in Radiokhimiya, 2018, Vol. 60, No. 1, pp. 49–54.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talaat, H.M., Ibrahim, I.T., Bayomy, N.A. et al. Synthesis of 99mTc-Radiolabeled Uridine as a Potential Tumor Imaging Agent. Radiochemistry 60, 51–57 (2018). https://doi.org/10.1134/S1066362218010095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362218010095

Keywords

Navigation