Skip to main content
Log in

In situ preparation of thermoset/clay nanocomposites via thiol-epoxy click chemistry

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of thermoset/clay nanocomposites are prepared by thiol-epoxy click reaction using commercially available starting compounds at ambient conditions in very good yields. The incorporation and exfoliation of clay nanolayers in the thermoset matrix are confirmed by FT-IR, XRD and TEM analyses. The influence of clay loadings on the thermal and mechanical analyses is investigated and all nanocomposites exhibit improved properties than that of the pristine thermoset. The nanocomposite containing 1% montmorillonite by weight has the most improved mechanical properties due to its highly exfoliated structure resulting in efficient interactions between clay and polymer matrix. A further increase of the clay loading results in the aggregation of clay plates to form intercalated structures leading to deteriorated thermal and mechanical properties of nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  2. Pavlidou S, Papaspyrides C (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198. https://doi.org/10.1016/j.progpolymsci.2008.07.008

    Article  CAS  Google Scholar 

  3. Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187. https://doi.org/10.1016/j.progpolymsci.2015.10.001

    Article  CAS  Google Scholar 

  4. Tasdelen MA, Kreutzer J, Yagci Y (2010) In situ synthesis of polymer/clay nanocomposites by living and controlled/living polymerization. Macromol Chem Phys 211(3):279–285. https://doi.org/10.1002/macp.200900590

    Article  CAS  Google Scholar 

  5. Dizman C, Ates S, Uyar T, Tasdelen MA, Torun L, Yagci Y (2011) Polysulfone/clay nanocomposites by in situ photoinduced crosslinking polymerization. Macromol Mater Eng 296(12):1101–1106. https://doi.org/10.1002/mame.201100114

    Article  CAS  Google Scholar 

  6. Karamane M, Raihane M, Tasdelen MA, Uyar T, Lahcini M, Ilsouk M, Yagci Y (2017) Preparation of fluorinated methacrylate/clay nanocomposite via in situ polymerization: characterization, structure, and properties. J Polym Sci A 55(3):411–418. https://doi.org/10.1002/pola.28403

    Article  CAS  Google Scholar 

  7. Altinkok C, Uyar T, Tasdelen MA, Yagci Y (2011) In situ synthesis of polymer/clay nanocomposites by type II photoinitiated free radical polymerization. J Polym Sci A 49(16):3658–3663. https://doi.org/10.1002/pola.24788

    Article  CAS  Google Scholar 

  8. Aydin M, Atilla Tasdelen M, Uyar T, Yagci Y (2013) In situ synthesis of A3-type star polymer/clay nanocomposites by atom transfer radical polymerization. J Polym Sci A 51(24):5257–5262. https://doi.org/10.1002/pola.26957

    Article  CAS  Google Scholar 

  9. Ozkose UU, Altinkok C, Yilmaz O, Alpturk O, Tasdelen MA (2017) In-situ preparation of poly (2-ethyl-2-oxazoline)/clay nanocomposites via living cationic ring-opening polymerization. Eur Polym J 88:586–593. https://doi.org/10.1016/j.eurpolymj.2016.07.004

    Article  CAS  Google Scholar 

  10. Wang X, Su Q, Shan JH, Zheng JP (2016) The effect of clay modification on the mechanical properties of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites prepared by in situ suspension polymerization. Polym Compos 37(6):1705–1714. https://doi.org/10.1002/pc.23343

    Article  CAS  Google Scholar 

  11. Assem Y, Khalaf AI, Rabia AM, Yehia AA, Zidan TA (2016) Synthesis and characterization of hybrid clay/poly (N,N-dimethylaminoethyl methacrylate) nanocomposites. Polym Compos 37(10):2950–2959. https://doi.org/10.1002/pc.23492

    Article  CAS  Google Scholar 

  12. Oral A, Tasdelen MA, Demirel AL, Yagci Y (2009) Poly(cyclohexene oxide)/clay nanocomposites by photoinitiated cationic polymerization via activated monomer mechanism. J Polym Sci A 47(20):5328–5335. https://doi.org/10.1002/pola.23581

    Article  CAS  Google Scholar 

  13. Aydin M, Uyar T, Tasdelen MA, Yagci Y (2015) Polymer/clay nanocomposites through multiple hydrogen-bonding interactions. J Polym Sci A 53(5):650–658. https://doi.org/10.1002/pola.27487

    Article  CAS  Google Scholar 

  14. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5

  15. Nandivada H, Jiang XW, Lahann J (2007) Click chemistry: versatility and control in the hands of materials scientists. Adv Mater 19(17):2197–2208. https://doi.org/10.1002/adma.200602739

    Article  CAS  Google Scholar 

  16. Binder WH, Sachsenhofer R (2008) ‘Click’ chemistry in polymer and material science: an update. Macromol Rapid Commun 29(12–13):952–981. https://doi.org/10.1002/marc.200800089

    Article  CAS  Google Scholar 

  17. Stuparu MC, Khan A (2016) Thiol-epoxy “click” chemistry: application in preparation and postpolymerization modification of polymers. J Polym Sci A 54(19):3057–3070. https://doi.org/10.1002/pola.28195

    Article  CAS  Google Scholar 

  18. De S, Khan A (2012) Efficient synthesis of multifunctional polymers via thiol-epoxy “click” chemistry. Chem Commun 48(25):3130–3132. https://doi.org/10.1039/c2cc30434a

    Article  CAS  Google Scholar 

  19. Binder S, Gadwal I, Bielmann A, Khan A (2014) Thiol-epoxy polymerization via an AB monomer: synthetic access to high molecular weight poly(beta-hydroxythio-ether)s. J Polym Sci A 52(14):2040–2046. https://doi.org/10.1002/pola.27212

    Article  CAS  Google Scholar 

  20. Guzman D, Ramis X, Fernandez-Francos X, Serra A (2015) Enhancement in the glass transition temperature in latent thiol-epoxy click cured thermosets. Polymers 7(4):680–694. https://doi.org/10.3390/polym7040680

    Article  CAS  Google Scholar 

  21. Acebo C, Fernandez-Francos X, Ramis X, Serra A (2016) Thiol-yne/thiol-epoxy hybrid crosslinked materials based on propargyl modified hyperbranched poly(ethyleneimine) and diglycidylether of bisphenol A resins. RSC Adv 6(66):61576–61584. https://doi.org/10.1039/c6ra13158a

    Article  CAS  Google Scholar 

  22. Acar SB, Ozcelik M, Uyar T, Tasdelen MA (2017) Polyhedral oligomeric silsesquioxane-based hybrid networks obtained via thiol-epoxy click chemistry. Iran Polym J 26(6):405–411. https://doi.org/10.1007/s13726-017-0529-x

    Article  CAS  Google Scholar 

  23. Gorkem Sencevik R, Atilla Tasdelen M (2014) Poly (methyl methacrylate)/POSS hybrid networks by type II photoinitiated free radical polymerization. Polym Compos 35(8):1614–1620. https://doi.org/10.1002/pola.27487

    Article  CAS  Google Scholar 

  24. Arslan I, Tasdelen MA (2016) POSS-based hybrid thermosets via photoinduced copper-catalyzed azide–alkyne cycloaddition click chemistry. Des Monomers Polym 19(2):155–160. https://doi.org/10.1080/15685551.2015.1124323

    Article  CAS  Google Scholar 

  25. Cengiz N, Rao JY, Sanyal A, Khan A (2013) Designing functionalizable hydrogels through thiol-epoxy coupling chemistry. Chem Commun 49(95):11191–11193. https://doi.org/10.1039/c3cc45859h

    Article  CAS  Google Scholar 

  26. Fernandez-Francos X, Konuray AO, Belmonte A, De la Flor S, Serra A, Ramis X (2016) Sequential curing of off-stoichiometric thiol-epoxy thermosets with a custom-tailored structure. Polym Chem 7(12):2280–2290. https://doi.org/10.1039/c6py00099a

    Article  CAS  Google Scholar 

  27. Guzman D, Ramis X, Fernandez-Francos X, Serra A (2015) Preparation of click thiol-ene/thiol-epoxy thermosets by controlled photo/thermal dual curing sequence. RSC Adv 5(123):101623–101633. https://doi.org/10.1039/c5ra22055f

    Article  CAS  Google Scholar 

  28. Guzman D, Ramis X, Fernandez-Francos X, Serra A (2014) New catalysts for diglycidyl ether of bisphenol A curing based on thiol-epoxy click reaction. Eur Polym J 59:377–386. https://doi.org/10.1016/j.eurpolymj.2014.08.001

    Article  CAS  Google Scholar 

  29. Brandle A, Khan A (2012) Thiol-epoxy ‘click’ polymerization: efficient construction of reactive and functional polymers. Polym Chem 3(12):3224–3227. https://doi.org/10.1039/c2py20591b

    Article  CAS  Google Scholar 

  30. Gadwal I, Khan A (2013) Protecting-group-free synthesis of chain-end multifunctional polymers by combining ATRP with thiol-epoxy ‘click’ chemistry. Polym Chem 4(8):2440–2444. https://doi.org/10.1039/c3py00136a

    Article  CAS  Google Scholar 

  31. Acebo C, Fernandez-Francos X, Ramis X, Serra A (2016) Multifunctional allyl-terminated hyperbranched poly(ethyleneimine) as component of new thiol-ene/thiol-epoxy materials. React Funct Polym 99:17–25. https://doi.org/10.1016/j.reactfunctpolym.2015.12.003

    Article  CAS  Google Scholar 

  32. Tasdelen MA (2011) Poly(epsilon-caprolactone)/clay nanocomposites via “click” chemistry. Eur Polym J 47(5):937–941. https://doi.org/10.1016/j.eurpolymj.2011.01.004

    Article  CAS  Google Scholar 

  33. Tasdelen MA, Van Camp W, Goethals E, Dubois P, Du Prez F, Yagci Y (2008) Polytetrahydrofuran/clay nanocomposites by in situ polymerization and “click” chemistry processes. Macromolecules 41(16):6035–6040. https://doi.org/10.1021/ma801149x

    Article  CAS  Google Scholar 

  34. Arslan M, Tasdelen MA (2017) Polymer nanocomposites via click chemistry reactions. Polymers 9(10):499. https://doi.org/10.3390/polym9100499

    Article  CAS  Google Scholar 

  35. Raquez JM, Deleglise M, Lacrampe MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35(4):487–509. https://doi.org/10.1016/j.progpolymsci.2010.01.001

    Article  CAS  Google Scholar 

  36. Yousefi A, Lafleur PG, Gauvin R (1997) Kinetic studies of thermoset cure reactions: a review. Polym Compos 18(2):157–168. https://doi.org/10.1002/pc.10270

    Article  CAS  Google Scholar 

  37. Zhang DH, Liu CH, Chen SF, Zhang JH, Cheng J, Miao MH (2016) Highly efficient preparation of hyperbranched epoxy resins by UV-initiated thiol-ene click reaction. Prog Org Coat 101:178–185. https://doi.org/10.1016/j.porgcoat.2016.08.010

    Article  CAS  Google Scholar 

  38. Flores M, Tomuta AM, Fernandez-Francos X, Ramis X, Sangermano M, Serra A (2013) A new two-stage curing system: thiol-ene/epoxy homopolymerization using an allyl terminated hyperbranched polyester as reactive modifier. Polymer 54(21):5473–5481. https://doi.org/10.1016/j.polymer.2013.07.056

    Article  CAS  Google Scholar 

  39. Sticker D, Rothbauer M, Lechner S, Hehenberger MT, Ertl P (2015) Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications. Lab Chip 15(24):4542–4554. https://doi.org/10.1039/c5lc01028d

    Article  CAS  PubMed  Google Scholar 

  40. Mohan T, Ramesh Kumar M, Velmurugan R (2005) Rheology and curing characteristics of epoxy–clay nanocomposites. Polym Int 54(12):1653–1659. https://doi.org/10.1002/pi.1897

    Article  CAS  Google Scholar 

  41. Piscitelli F, Scamardella AM, Romeo V, Lavorgna M, Barra G, Amendola E (2012) Epoxy composites based on amino-silylated MMT: the role of interfaces and clay morphology. J Appl Polym Sci 124(1):616–628. https://doi.org/10.1002/app.35015

    Article  CAS  Google Scholar 

  42. Lan T, Kaviratna PD, Pinnavaia TJ (1995) Mechanism of clay tactoid exfoliation in epoxy–clay nanocomposites. Chem Mater 7(11):2144–2150. https://doi.org/10.1021/cm00059a023

    Article  CAS  Google Scholar 

  43. Osman MA, Mittal V, Morbidelli M, Suter UW (2004) Epoxy–layered silicate nanocomposites and their gas permeation properties. Macromolecules 37(19):7250–7257. https://doi.org/10.1002/pc.23397

    Article  CAS  Google Scholar 

  44. Brown JM, Curliss D, Vaia RA (2000) Thermoset–layered silicate nanocomposites. Quaternary ammonium montmorillonite with primary diamine cured epoxies. Chem Mater 12(11):3376–3384. https://doi.org/10.1021/cm000477+

    Article  CAS  Google Scholar 

  45. Morgan AB, Gilman JW (2003) Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. J Appl Polym Sci 87(8):1329–1338. https://doi.org/10.1002/app.11884

    Article  CAS  Google Scholar 

  46. Sanchez-Cabezudo M, Prolongo MG, Salom C, del Cid MAG, Masegosa RM (2016) Ternary nanocomposites: curing, morphology, and mechanical properties of epoxy/thermoplastic/organoclay systems. Polym Compos 37(7):2184–2195. https://doi.org/10.1002/pc.23397

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yalova University Research Fund (Project no: 2015/YL/055) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Atilla Tasdelen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purut Koc, O., Bekin Acar, S., Uyar, T. et al. In situ preparation of thermoset/clay nanocomposites via thiol-epoxy click chemistry. Polym. Bull. 75, 4901–4911 (2018). https://doi.org/10.1007/s00289-018-2306-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2306-1

Keywords

Navigation