Skip to main content
Log in

Electroactive strain properties of acrylic resin elastomer-based composite films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Copper phthalocyanine oligomer (CuPc) possessing high dielectric constant was grafted onto acrylic elastomer (ACM) backbones to fabricate elastomeric nanocomposites (referred to here as ACM-g-CuPc) with high dielectric constant. High strain of ACM-g-CuPc film could be achieved at low electric field. The electric field-induced strain properties of ACM-g-CuPc films were studied from four aspects: the pre-stretch value, butyl acrylate (BA) content, active region-to-window radius ratio, and strain hysteresis. The results revealed that the area strain in the active region first increased and then decreased with the increase in the pre-stretch value; however, it increased with the increase in BA content and decreased with the increase in the active region-to-window radius ratio. When the active region-to-window radius ratio was 1:5, the ACM-g-CuPc film with 60 wt% BA content and 150 × 150 % pre-stretch value exhibited the maximum area strain of 23.8 % under an electric field of 12.5 MV m−1. In a complete driving period, ACM-g-CuPc film exhibited a strain hysteresis phenomenon, forming a strain hysteresis loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brochu P, Pei QB (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commu n 31:10–36

    Article  CAS  Google Scholar 

  2. Carpi F, Kornbluh R, Sommer-Larsen P, Alici G (2011) Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications. Bioinspir Biomim 6:1–10

    Google Scholar 

  3. Pramanik B, Sahu RK, Bhaumik S (2012) Experimental study on permittivity of acrylic dielectric elastomer. In: IEEE 10th International Conference

  4. Shankar R, Ghosh TK, Spontak RJ (2009) Mechanical and actuation behavior of electroactive nanostructured polymers. Sens Actuators A Phys 151:46–52

    Article  CAS  Google Scholar 

  5. McCoul D, Murray C, Carlo DD, Pei QB (2013) Dielectric elastomer actuators for active microfluidic control. SPIE Smart Structures and Materials NDE

  6. Palakodeti R, Kessler MR (2006) Influence of frequency and prestrain on the mechanical efficiency of dielectric electroactive polymer actuators. Mater Lett 60:3437–3440

    Article  CAS  Google Scholar 

  7. Park HS, Wang QM, Zhao XH (2013) Electromechanical instability on dielectric polymer surface: Modeling and experiment. Comput Method Appl M 260:40–49

    Article  Google Scholar 

  8. David L, Henann Shawn A, Bertoldi K (2013) Modeling of dielectric elastomers: design of actuators and energy harvesting devices. J Mech Phys Solids 61:2047–2066

    Article  Google Scholar 

  9. Lallart M, Capsal JF, Sebald G, Cottinet PJ, Guyomar D (2014) Converse electrostrictive effect in dielectric polymers. Sens Actuators B Chem 190:259–264

    Article  CAS  Google Scholar 

  10. Samin A, Samuel R, Herbert RS (2013) Improved electromechanical behavior in castable dielectric elastomer actuators. Appl Phys Lett 102:1–5

    Google Scholar 

  11. Li TF, Keplinger C, Baumgartner R, Bauer S (2013) Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. J Mech Phys Solids 61:611–628

    Article  Google Scholar 

  12. Chouinard P, Plante JS (2013) Bistable antagonistic dielectric elastomer actuators for binary robotics and mechatronics. IEEE-ASME T Mech 17:857–865

    Article  Google Scholar 

  13. Chakraborti P, Toprakci HK, Yang P, Di Spigna N, Franzon P, Ghosh T (2012) A compact dielectric elastomer tubular actuator for refreshable Braille displays. Sens Actuators A Phys 179:151–157

    Article  CAS  Google Scholar 

  14. Ahmed S, Ounaies Z, Frecker M (2014) Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures. Smart Mater Struct 23:094003

    Article  Google Scholar 

  15. Suo Z (2010) Theory of dielectric elastomers. Acta Mech Solida Sin 23:549–578

    Article  Google Scholar 

  16. Yang J, Yang XL, Pu ZJ, Lan C, Liu XB (2013) Controllable high dielectric permittivity of poly (arylene ether nitriles)/copper phthalocyanine functional nanohybrid films via chemical interaction. Mater Lett 93:199–202

    Article  CAS  Google Scholar 

  17. Huang C, Zhang QM (2005) Fully functionalized high-dielectric-constant nanophase polymers with high electromechanical response. Adv Mater 17:1153–1158

    Article  CAS  Google Scholar 

  18. Liu RN, Wang JW, Li Q (2014) Copper phthalocyanine oligomer grafted acrylic elastomer nanocomposites with high dielectric constants. J Appl Polym Sci 131:6

    Google Scholar 

  19. Achar BN, Fohlen GM, Parker JA (1987) Process for preparing phthalocyanine polymer from imide containing bisphthalonitrile. US Patent 4,649,189. 10

  20. Li B, Zhao Z (2014) Electromechanical deformation of dielectric elastomer in two types of pre-stretch. EPL Europhys Lett 106:67009

    Article  Google Scholar 

  21. Li B, Chen H, Zhou J (2013) Electromechanical stability of dielectric elastomer composites with enhanced permittivity. Compos Part A Appl S 52:55–61

    Article  CAS  Google Scholar 

  22. Koh SJA, Li T, Zhou J, Zhao X, Hong W, Zhu J (2011) Mechanisms of large actuation strain in dielectric elastomers. J Polym Sci Pol Phys 49:504–515

    Article  CAS  Google Scholar 

  23. Trols A, Kogler A, Baumgartner R, Kaltseis R, Keplinger C, Schwodiauer R, Graz I, Bauer S (2013) Stretch dependence of the electrical breakdown strength and dielectric constant of dielectric elastomers. Smart Mater Struct 22:104012

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21174063), the Natural Science Foundation of Jiangsu Province (No. BK20131358), the Aeronautical Science Foundation of China (No. 2011ZF52063 and No. 2014ZF52069), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, J., Ding, X. et al. Electroactive strain properties of acrylic resin elastomer-based composite films. Polym. Bull. 72, 2059–2073 (2015). https://doi.org/10.1007/s00289-015-1389-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1389-1

Keywords

Navigation