Skip to main content

Advertisement

Log in

Deep phosphorus fertiliser placement and reduced irrigation methods for rice (Oryza sativa L.) combine to knock-out competition from its nemesis, barnyard grass (Echinochloa crus-galli (L.) P.Beauv)

  • Commentary
  • Published:
Plant and Soil Aims and scope Submit manuscript

The Original Article was published on 21 January 2015

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61

    Article  CAS  PubMed  Google Scholar 

  • Bagavathiannan MV, Norsworthy JK, Scott RC (2011) Comparison of weed management programs for furrow irrigated and flooded hybrid rice production in Arkansas. Weed Technol 25:556–562

    Article  Google Scholar 

  • Blackshaw RE, Molnar LJ (2009) Phosphorus fertiliser application method affects weed growth and competition with wheat. Weed Sci 57:311–318

    Article  CAS  Google Scholar 

  • Borrell A, Garside A, Fukai S (1997) Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. Field Crop Res 52:231–248

    Article  Google Scholar 

  • Chauhan BS (2012) Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technol 26:1–13

    Article  Google Scholar 

  • Chauhan BS, Abugho SB (2013) Effects of water regime, nitrogen fertilization, and rice plant density on growth and reproduction of lowland weed Echinochloa crus-galli. Crop Prot 54:142–147

    Article  Google Scholar 

  • Chauhan BS, Johnson DE (2008) Germination ecology of Chinese sprangletop (Leptochloa chinensis) in the Philippines. Weed Sci 56:820–825

    Article  CAS  Google Scholar 

  • Chauhan BS, Johnson DE (2010a) Implications of narrow crop row spacing and delayed Echinochloa colona and Echinochloa crus-galli emergence for weed growth and crop yield loss in aerobic rice. Field Crop Res 117:177–182

    Article  Google Scholar 

  • Chauhan BS, Johnson DE (2010b) Relative importance of shoot and root competition in dry-seeded rice growing with junglerice (Echinochloa colona) and ludwigia (Ludwigia hyssopifolia). Weed Sci 58:295–299

    Article  CAS  Google Scholar 

  • Chauhan BS, Johnson DE (2011) Ecological studies on Echinochloa crus-galli and the implications for weed management in direct-seeded rice. Crop Prot 30:1385–1391

    Article  Google Scholar 

  • Clark R, MacCurdy R, Jung J, Shaff J, McCouch S, Aneshansley D, Kochian L (2011) Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156:455–465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Smet I, White PJ, Bengough AG, Dupuy L et al (2012) Analyzing lateral root development: how to move forward. Plant Cell 24:15–20

    Article  PubMed Central  PubMed  Google Scholar 

  • De Vida FBP, Laca E, Mackill D, Fernandez GM, Fischer A (2006) Relating rice traits to weed competitiveness and yield: a path analysis. Weed Sci 54:1122–1131

    Article  Google Scholar 

  • Dilday RH, Mattice JD, Moldenhauer KA, Yan W (2001) Allelopathic potential in rice germplasm against ducksalad, redstem and barnyardgrass. J Crop Prod 4:287–301

    Article  Google Scholar 

  • Dingkuhn M, Johnson DE, Sow A, Audebert AY (1999) Relationships between upland rice canopy characteristics and weed competitiveness. Field Crop Res 61:79–95

    Article  Google Scholar 

  • Dobermann A, Fairhurst T (2000) Rice: nutrient disorders & nutrient management. Potash & Phosphate Institute, Potash & Phosphate Institute of Canada and International Rice Research Institute Singapore and Los Baños

  • Fischer A, Ramírez HV, Lozano J (1997) Suppression of junglerice [Echinochloa colona (L.) Link] by irrigated rice cultivars in Latin America. Agron J 89:516–521

    Article  Google Scholar 

  • Fischer AJ, Ateh CM, Bayer DE, Hill JE (2000) Herbicide-resistant Echinochloa oryzoides and E. phyllopogon in California Oryza sativa fields. Weed Sci 48:225–230

    Article  CAS  Google Scholar 

  • Fofana B, Rauber R (2000) Weed suppression ability of upland rice under low-input conditions in West Africa. Weed Res 40:271–280

    Article  Google Scholar 

  • Gealy DR, Fischer AJ (2010) 13C discrimination: a stable isotope method to quantify root interactions between C3 rice (Oryza sativa) and C4 barnyardgrass (Echinochloa crus-galli) in flooded fields. Weed Sci 58:359–368

    Article  CAS  Google Scholar 

  • Gealy DR, Gealy GS (2011) 13Carbon isotope discrimination in roots and shoots of major weed species of southern U.S. rice fields and its potential use for analysis of rice–weed root interactions. Weed Sci 59:587–600

    Article  CAS  Google Scholar 

  • Gealy DR, Moldenhauer KAK (2012) Use of 13C isotope discrimination analysis to quantify distribution of barnyardgrass and rice roots in a four-year study of weed-suppressive rice. Weed Sci 60:133–142

    Article  CAS  Google Scholar 

  • Gealy DR, Estorninos LE Jr, Gbur EE, Chavez RSC (2005a) Interference interactions of two rice cultivars and their F3 cross with barnyardgrass (Echinochloa crus-galli) in a replacement series study. Weed Sci 53:323–330

    Article  CAS  Google Scholar 

  • Gealy D, Ottis B, Talbert R, Moldenhauer K, Yan W (2005b) Evaluation and improvement of allelopathic rice germplasm at Stuttgart, Arkansas, USA. In: Harper JDI, An M, Wu H, Kent JH (eds) Proceedings of the 4th world congress on allelopathy, “establishing the scientific base”. Charles Sturt University, Wagga Wagga, pp 157–163

    Google Scholar 

  • Gealy DR, Moldenhauer KA, Duke S (2013) Root distribution and potential interactions between allelopathic rice, sprangletop (Leptochloa spp.), and barnyardgrass (Echinochloa crus galli) based on 13C isotope discrimination analysis. J Chem Ecol 39:186–203

    Article  CAS  PubMed  Google Scholar 

  • Gealy DR, Anders M, Watkins B, Duke S (2014) Crop performance and weed suppression by weed-suppressive rice cultivars in furrow- and flood-irrigated systems under reduced herbicide inputs. Weed Sci 62:303–320

    Article  CAS  Google Scholar 

  • Gibson KD, Foin TC, Hill JE (1999) The relative importance of root and shoot competition between water-seeded rice and Echinochloa phyllopogon. Weed Res 39:181–190

    Article  Google Scholar 

  • Gibson KD, Hill JE, Foin TC, Caton BP, Fischer AJ (2001) Water-seeded rice cultivars differ in ability to interfere with watergrass. Agron J 93:181–190

    Article  Google Scholar 

  • Gibson KD, Fischer AJ, Foin TC, Hill JE (2002) Implications of delayed Echinochloa spp. germination and duration of competition for integrated weed management in water-seeded rice. Weed Res 42:351–358

    Article  Google Scholar 

  • Giussani LM, Cota-Sánchez JH, Zuloaga FO, Kellogg EA (2001) A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. Am J Bot 88:1993–2012

    Article  CAS  PubMed  Google Scholar 

  • Gunawardana WGN, Ariyaratne M, Bandaranayake P, Marambe B (2013) Control of Echinochloa colona in aerobic rice: effect of different rates of seed paddy and post-plant herbicides in the dry zone of Sri Lanka. In: Baka BHJ. Kurniadie D, Tjitrosoedirdjo S. (eds) Proceedings of the 24th 22 Asian Pacific Weed Science Society Conference. Bandung, Indonesia, pp 431–437

  • Heap I (2014) Global perspective of herbicide-resistant weeds. Pest Manag Sci 70:1306–1315

    Article  CAS  PubMed  Google Scholar 

  • Ho MD, McCannon BC, Lynch JP (2004) Optimization modeling of plant root architecture for water and phosphorus acquisition. J Theor Biol 226:331–340

    Article  CAS  PubMed  Google Scholar 

  • Iyer-Pascuzzi A, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Weitz J, Benefey P (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Janiya JD, Moody K (1989) Weed populations in transplanted and wet‐seeded rice as affected by weed control method. Int J Pest Manag 35:8–11

    Google Scholar 

  • Juliano LM, Casimero MC, Llewellyn R (2010) Multiple herbicide resistance in barnyard grass (Echinochloa crus-galli) in direct-seeded rice in the Philippines. Int J Pest Manag 56:299–307

    Article  CAS  Google Scholar 

  • Kalapos T, Van Den Boogaard R, Lambers H (1996) Effect of soil drying on growth, biomass allocation and leaf gas exchange of two annual grass species. Plant Soil 185:137–149

    Article  CAS  Google Scholar 

  • Kim SY, Madrid AV, Park ST, Yang SJ, Olofsdotter M (2005) Evaluation of rice allelopathy in hydroponics. Weed Res 45:74–79

    Article  Google Scholar 

  • Kleinig CR, Noble JC (1968) Competition between rice and barnyard grass (Echinochloa). 1. The influence of weed density and nutrient supply in the field. Anim Prod Sci 8:358–363

    Article  Google Scholar 

  • Kong CH, Li HB, Hu F, Xu XH, Wang P (2006) Allelochemicals released by rice roots and residues in soil. Plant Soil 288:47–56

    Article  CAS  Google Scholar 

  • Labrada R (2007) The need for improved weed management in rice. Proceedings of the 20th Session of the international rice commission, Bangkok, Thailand, July 23–26, 2007. FAO, Rome, pp 310–324

    Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marambe B, Amarasinghe L (2002) Propanil‐resistant barnyard grass [Echinochloa crusgalli (L.) Beauv.] in Sri Lanka: seedling growth under different temperatures and control. Weed Biol Manag 2:194–199

    Article  CAS  Google Scholar 

  • Mohammadi GR (2013) Alternative weed control methods: a review. Department of Crop Production and Breeding, Faculty of Agriculture and Natural Resources, Razi University, Kermanshah

    Google Scholar 

  • Mortensen DA, Dieleman JA, Johnson GA (1998) Weed spatial variation and weed management. In: Hatfield JL, Buhler DD, Stewart BA (eds) Integrated weed and soil management. Ann Arbor Press, Chelsea, pp 293–310

    Google Scholar 

  • Norsworthy JK, Griffith GM, Scott RC (2008) Imazethapyr use with and without clomazone for weed control in furrow-irrigated, imidazolinone-tolerant rice. Weed Technol 22:217–221

    Article  CAS  Google Scholar 

  • Norsworthy JK, Scott RC, Bangarwa SK, Griffith GM, Wilson MJ, McCelland M (2011) Weed management in a furrow irrigated imidazolinone-resistant hybrid rice production system. Weed Technol 25:25–29

    Article  CAS  Google Scholar 

  • Norsworthy JK, Bond J, Scott RC (2013) Weed management practices and needs in Arkansas and Mississippi rice. Weed Technol 27:623–630

    Article  Google Scholar 

  • Pandey S, Velasco L (2005) Trends in crop establishment methods in Asia and research issues. In: Toriyama K, Heong KL, Hardy B (eds) Rice is life: scientific perspectives for the 21st century. International rice research institute and Tsukuba, Japan. Japan International Research Center for Agricultural Sciences, Los Baños, pp 178–181

    Google Scholar 

  • Perera KK, Ayers PG, Gunasena HPM (1992) Root growth and the relative importance of root and shoot competition in interactions between rice (Oryza sativa) and Echinochloa crusgalli. Weed Res 32:67–76

    Article  Google Scholar 

  • Piedade MTF, Junk WJ, Long SP (1991) The productivity of the C4 grass Echinochloa polystachya on the Amazon floodplain. Ecology 72:1456–1463

    Article  Google Scholar 

  • Rao AN, Johnson DE, Sivaprasad B, Ladha JK, Mortimer AM (2007) Weed management in direct-seeded rice. Adv Agron 93:153–255

    CAS  Google Scholar 

  • Rewald B, Meinen C, Trockenbrodt M, Ephrath JE, Rachmilevitch S (2012) Root taxa identification in plant mixtures- current techniques and future challenges. Plant Soil 359:165–182

    Article  CAS  Google Scholar 

  • Rose TJ, Impa SM, Rose MT, Pariasca-Tanaka J, Mori A, Heuer S, Johnson-Beebout SE, Wissuwa M (2013) Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding. Ann Bot 112:331–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370

    Article  CAS  Google Scholar 

  • Smith RJ Jr (1988) Weed thresholds in southern U.S. rice (Oryza sativa). Weed Technol 2:232–241

    Google Scholar 

  • Suriyagoda L, De Costa WAJM, Lambers H (2014) Growth and phosphorus nutrition of rice when inorganic fertiliser application is partly replaced by straw under varying moisture availability in sandy and clay soils. Plant Soil 384:53–68

    Article  CAS  Google Scholar 

  • Thakur AK, Rath S, Patil DU, Kumar A (2011) Effects on rice plant morphology and physiology of water and associated management practices of the system of rice intensification and their implications for crop performance. Paddy Water Environ 9:13–24

    Article  Google Scholar 

  • Tuong TP, Bouman BAM, Mortimer M (2005) More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Prod Sci 8:231–241

    Article  Google Scholar 

  • Turral H, Burke J, Faures JM (2011) Climate change, water and food security. FAO water reports, no. 36. Rome, Italy

    Google Scholar 

  • Uga Y (2012) Quantitative measurement of root growth angle by using the basket method. In: Shashidhar HE, Henry A, Hardy B (eds) Methodologies for root drought studies in rice. International Rice Research Institute, Los Baños, pp 22–26

    Google Scholar 

  • Wasson AP, Richards RA, Chatrath R, Misra SC, Sai Prasad SV, Rebetzke GJ, Kirkegaard KA, Christopher J, Watt M (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63:3485–3498

    Article  CAS  PubMed  Google Scholar 

  • Weerarathne LVY, Suriyagoda LDB, Marambe B (2015 Barnyard grass (Echinochloa crus-galli (L.) P.Beauv) is less competitive on rice (Oryza sativa L.) when phosphorus (P) is applied to deeper layers in P-deficient and moisture limited soils. Plant Soil

  • Wijewardena JDH (2005) Improvement of plant nutrient management for better farmer livelihood, food security and environment in Sri Lanka. In: Improving plant nutrient management for better farmer livelihoods, food security and environmental sustainability, Beijing, China. pp 73–93

  • Wong SC, Osmond CB (1991) Elevated atmosphere partial pressure of CO2 and plant growth. III. Interactions between Triticum aestivum (C3) and Echinochloa frumentacea (C4) during growth in mixed culture under different CO2, N nutrition and irradiance treatments, with emphasis on below-ground responses estimated using the δ13C value of root biomass. Aust J Plant Physiol 18:137–152

    Article  CAS  Google Scholar 

  • Xuan TD, Chung M III, Khanh TD, Tawata S (2006) Identification of phytotoxic substances from early growth of barnyard grass (Echinochloa crus-galli) root exudates. J Chem Ecol 32:895–906

    Article  CAS  PubMed  Google Scholar 

  • Zhao DL, Atlin GN, Bastiaans L, Spiertz JHJ (2006) Developing selection protocols for weed competitiveness in aerobic rice. Field Crop Res 97:272–285

    Article  Google Scholar 

  • Zhu J, Zhang C, Lynch JP (2010) The utility of phenotypic plasticity of root hair length for phosphorus acquisition. Funct Plant Biol 37:313–322

    Article  Google Scholar 

  • Zhu J, Ingram PA, Benfey PN, Elich T (2011) From lab to field, new approaches to phenotyping root system architecture. Curr Opin Plant Biol 14:310–317

    Article  PubMed  Google Scholar 

  • Ziska LH, Gealy DR, Burgos N, Caicedo AL, Gressel J, Lawton-Rauh AL, Avila LA, Theisen G, Norsworthy J, Ferrero A, Vidotto F, Johnson DE, Ferreira FG, Marchesan E, Menezes V, Cohn MA, Linscombe S, Carmona L, Tang R, Merotto A Jr (2015) Weedy (red) rice: an emerging constraint to global rice production. In: Sparks DL (ed) Advances in agronomy, vol 129. New York, Elsevier, pp 181–228

    Google Scholar 

Download references

Acknowledgments

The U.S. Department of Agriculture is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D R Gealy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gealy, D.R. Deep phosphorus fertiliser placement and reduced irrigation methods for rice (Oryza sativa L.) combine to knock-out competition from its nemesis, barnyard grass (Echinochloa crus-galli (L.) P.Beauv). Plant Soil 391, 427–431 (2015). https://doi.org/10.1007/s11104-015-2478-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2478-5

Keywords

Navigation