Skip to main content
Log in

Evaluation of stresses in two geodynamically different areas: Stable foreland and extensional backarc

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Areas which are geodynamically different have different behaviors both in their thermal regime and seismic activity. A stable area has a geotherm which can be considered as standard, extensional and compressional areas have, respectively, high and low temperature gradients. The Italian region includes different geodynamical areas and all such situations are present. We consider the Apulian platform as an example of a stable area and the Tuscany-Latium as an example of an extensional area. For both of them the present geotherms are calculated, taking into account, for the Tuscany-Latium, its thermal history. Assuming that each region is subject to a constant strain rate, the stresses are calculated as functions of depth and time. The rheological behavior is assumed to be linear viscoelastic, with viscosity dependent on temperature and elastic parameters dependent on lithology. The geothermal profile and the rheological structure of the lithosphere remarkably affect the processes of stress accumulation which control the distribution of seismic activity. The abrupt decrease of the temperature gradient at the Moho produces considerably higher stress values with respect to the case of uniform gradient, thus favoring subcrustal seismicity. In the case of a standard temperature gradient, subcrustal seismicity is predicted and a gap in seismicity, indicating a soft intracrustal layer, exists if there is a discontinuity in rheology. By contrast, in the case of a high-temperature gradient, subcrustal seismicity is not to be expected, even in the presence of a discontinuity in rheology, since subcrustal temperatures are already too high to permit a sufficient stress accumluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldi, P., Bertini, G., Cameli, G. M., Decandia, F. A., Dini, I., Lazzarotto, A., andLiotta, D. La tettonica distensiva post-collisionale nell'area geotermica di Larderello (Toscana meridionale). InStudi Geologici Camerti, Volume speciale 1994/1 (eds. Lazzarotto, A., and Liotta, D.) (Università di Camerino, Italy, 1994) pp. 183–193.

    Google Scholar 

  • Calcagnile, G., andPanza, G. F. (1980),The Main Characteristics of the Lithosphere-asthenosphere System in Italy and Surrounding Regions, Pure and Appl. Geophys.119, 865–879.

    Google Scholar 

  • Cameli, G. M., Dini, I., andLiotta, D. (1993),Upper Crustal Structure of the Larderello Geothermal Field as a Feature of Post-collisional Extensional Tectonics (Southern Tuscany, Italy), Tectonophysics224, 413–423.

    Google Scholar 

  • Caputo, M., Panza, G. F., andPostpischl, D. (1970),Deep Structure of the Mediterranean Basin, J. Geophys. Res.75, 4919–4923.

    Google Scholar 

  • Cermak, V. andRybach, L. L.,Thermal conductivity and specific heat of minerals and rocks. InNumerical Data and Functional Relationships in Science and Technology (ed. Landolt-Börnstein), Physical Properties of Rocks (Springer-Verlag, Berlin 1982) pp. 305–341.

    Google Scholar 

  • Chen, W. P., andMolnar, P. (1983),Focal Depth of Intracontinental and Intraplate Earthquakes and their Implications for the Thermal and Mechanical Properties of the Lithosphere, J. Geophys. Res.88, 4183–4214.

    Google Scholar 

  • Christensen, R. M.,Theory of Viscoelasticity: An Introduction (Academic Press, New York 1971) 245 pp.

    Google Scholar 

  • Console, R., Di Giovanbattista, R., Favali, P., andSmriglio, G. (1989),Lower Adriatic Sea Seismic Sequence (January 1986): Spatial Definition of the Seismogenic Structure, Tectonophysics166, 235–246.

    Google Scholar 

  • Doglioni, C. (1991),A Proposal of Kinematic Modelling for W-dipping Subductions-possible Applications to the Tyrrhenian-Apennines System, Terra Nova3, 423–434.

    Google Scholar 

  • Doglioni, C. (1992),Main Differences between Thrust Belts, Terra Nova,4, 152–164.

    Google Scholar 

  • Doser, D. I., andKanamori, H. (1986),Depth of Seismicity in the Imperial Valley Region (1977–1983) and its Relationship to Heat Flow, Crustal Structure and the October 15, 1979, Earthquake, J. Geophys. Res.91, 675–688.

    Google Scholar 

  • Dragoni, M. (1988),A Model of Interseismic Stress Evolution in a Transcurrent Shear Zone, Tectonophysics.149, 265–273.

    Google Scholar 

  • Dragoni, M. (1993),The Brittle-ductile Transition in Tectonic Boundary Zones, Annali di Geofisica36, 37–44.

    Google Scholar 

  • Dragoni, M., Bonafede, M., andBoschi, E. (1986),Shallow Earthquakes in a Viscoelastic Shear Zone with Depth-dependent Friction and Rheology, Geophys. J. R. Astr. Soc.86, 617–633.

    Google Scholar 

  • Dragoni, M., andPondrelli, S. (1991),Depth of the Brittle-ductile Transition in a Transcurrent Boundary Zone, Pure and Appl. Geophys.135, 447–461.

    Google Scholar 

  • Dragoni, M., Santini, S., andTallarico, A. (1993),A Viscoelastic Shear Zone Model of Compressional and Extensional Plate Boundaries, Pure and Appl. Geophys.140, 471–491.

    Google Scholar 

  • Favali, P., Funiciello, R., Mattietti, G., Mele, G., andSalvini, F. (1993),An Active Margin Across the Adriatic Sea (Central Mediterranean Sea), Tectonophysics219, 109–117.

    Google Scholar 

  • Finetti, I. (1982),Structure, Stratigraphy and Evolution of Central Mediterranean, Boll. Geofis. Teor. Appl.24, 247–315.

    Google Scholar 

  • Ghisetti, F., Scarpa, R., andVezzani, L. (1982),Seismic Activity, Deep Structures and Deformation Processes in the Calabrian Arc, Southern Italy, Earth Evol. Sci.3, 248–260.

    Google Scholar 

  • Giardini, D., andVelonà, M. (1991),Deep Seismicity of the Tyrrhenian Sea, Terra Nova3, 57–64.

    Google Scholar 

  • Kirby, S. H., andKronenberg, A. K. (1987),Rheology of the Lithosphere: Selected Topics, Rev. Geophys.25, 1219–1244.

    Google Scholar 

  • Lachenbruch, A. H. (1970),Crustal Temperature and Heat Production: Implications of the Linear Heat Flow Relation, J. Geophys. Res.75, 3291–3300.

    Google Scholar 

  • Malinverno, A., andRyan, W. B. F. (1986),Extension in the Tyrrhenian Sea and Shortening in the Apennines as a Result of Arc Migration Driven by Sinking of the Lithosphere, Tectonics5, 227–245.

    Google Scholar 

  • McKenzie, D. (1978),Some Remarks on the Development of Sedimentary Basins, Earth Planet. Sci. Lett.40, 25–32.

    Google Scholar 

  • Meissner, R., andStrehlau, J. (1982),Limits of Stresses in Continental Crusts and their Relations to the Depth-frequency Distribution of Shallow Earthquakes, Tectonics1, 73–89.

    Google Scholar 

  • Mongelli, F., Loddo, M., andCalcagnile, G. (1975),Some Observations on the Apennines Gravity field, Earth Plan. Sci. Lett.24, 385–393.

    Google Scholar 

  • Mongelli, F., Loddo, M., andTramacere, A. (1982),Thermal Conductivity, Diffusivity and Specific Heat Variation of Some Travale (Tuscany) Rocks versus Temperature, Tectonophysics83, 33–43.

    Google Scholar 

  • Mongelli, F., Zito, G., Ciaranfi, N., andPieri, P. (1989),Interpretation of Heat Flow Density on the Apennine Chain, Italy, Tectonophysics164, 267–280.

    Google Scholar 

  • Mongelli, F., Zito, G., Della Vedova, B., Pellis, G., Squarci, P., andTaffi, L.,Geothermal regime of Italy and surrounding seas. InExploration of the Deep Continental Crust: Terrestrial Heat Flow and the Lithosphere) (Cermak, V., and Rybach, L. L., eds), (Springer-Verlag, Berlin 1991) pp. 381–394.

    Google Scholar 

  • Moretti, I., andRoyden, L. (1988),Deflection, Gravity Anomalies and Tectonics of a Doubly Subducted Continental Lithosphere: Adriatic and Ionian Seas, Tectonics7, 875–893.

    Google Scholar 

  • Morgan, P., Seager, W. R., andGolombek, M. P. (1986),Cenozoic Thermal, Mechanical and Tectonic Evolution of the Rio Grande Rift, J. Geophys. Res.91, 6263–6276.

    Google Scholar 

  • Nicolich, R., andPellis, G. (1979),Il contributo dei dati geofisici per lo studio delle strutture crostali della provincia geotermica tosco-laziale, Contributo28, Ist. Min. Geofis. Appl., Univ. Trieste.

  • Panza, G. F. (1984),The Deep Structure of the Mediterranea-Alpine Region and Large Shallow Earthquakes, Mem. Soc. Geol. It.29, 3–11.

    Google Scholar 

  • Panza, G. F., Mueller, S., Calcagnile, G., andKnopoff, L. (1982),Delineation of th Central Italian Upper Mantle Anomaly, Nature296, 238–239.

    Google Scholar 

  • Pescatore, T., andSenatore, M. R. (1986):A comparison between a present-day (Taranto Gulf) and a Miocene (Irpinia Basin) foredeep of the Southern Apennines (Italy). InForeland Basins: Spectal Publication of the International Association of Sedimentologists (Allen, P. A., and Homewood, P., eds.),8, 169–182.

  • Prescott, W. H., andNur, A. (1981),The Accommodation of Relative Motion at Depth on the San Andreas Fault System in California, J. Geophys. Res.86, 999–1004.

    Google Scholar 

  • Ranalli, G.,Rheology of the Earth (Allen & Unwin, Boston 1987).

    Google Scholar 

  • Ricchetti, G., andMongelli, F. (1980),Flessione e campo gravimetrico della micropiastra apula, Boll Soc. Geol. It.99, 431–436.

    Google Scholar 

  • Royden, L., Patacca, E., andScandone, P. (1987),Segmentation and Configuration of Subducted Lithosphere in Italy: An Important Control on Thrust-belt and Foredeep-basin Evolution, Geology15, 714–717.

    Google Scholar 

  • Scarascia, S., Lozej, A., andCassinis, R. (1994),Crustal Structures of the Ligurian, Tyrrhenian and Ionian Seas and Adjacent Onshore Areas Interpreted from Wide-angle Seismic Profiles, Boll. Geofis. Teor. Appl.,36, 5–19.

    Google Scholar 

  • Selvaggi, G., andAmato, A. (1992),Subcrustal Earthquakes in the Northern Apennines (Italy): Evidence for a Still Active Subduction?, Geophys. Res. Lett.19, 2127–2130.

    Google Scholar 

  • Serri, G. (1990),Neogene-Quaternary Magmatism of the Tyrrhenian Region: Characterization of the Magma Sources and Geodynamic Implications, Mem. Soc. Geol. It.41, 219–242.

    Google Scholar 

  • Sibson, R. H. (1974),Frictional Constraints on Thrust, Wrench and Normal Faults, Nature249, 542–544.

    Google Scholar 

  • Sibson, R. H. (1982),Fault Zone Models, Heat Flow and the Depth Distribution of Earthquakes in the Continental Crust of the United States, Bull. Seismol. Soc. Am.72, 151–163.

    Google Scholar 

  • Spakman, W. (1989),Tomographic Images of the Upper Mantle below Central Europe and the Mediterranean, Terra Nova2, 542–553.

    Google Scholar 

  • Turcotte, D. L., Liu, J. Y., andKulhawy, F. H. (1984),The Role of an Intracrustal Asthenosphere on the Behavior of Major Strike-slip Faults, J. Geophys. Res.89, 5801–5816.

    Google Scholar 

  • Zoth, G., andHaenel, R. Appendix. InHandbook of Terrestrial Heat Flow Density Determination (Haenel, R., Rybach, L., and Stegena, L., eds.), (Kluwer Acad. Publ., Dordrecht 1988) pp. 449–453.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragoni, M., Doglioni, C., Mongelli, F. et al. Evaluation of stresses in two geodynamically different areas: Stable foreland and extensional backarc. PAGEOPH 146, 319–341 (1996). https://doi.org/10.1007/BF00876496

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00876496

Key words

Navigation