ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Last 14 Days Catalog Additions

Export
  • 11
    Call number: AWI G8-19-92586
    Description / Table of Contents: Arctic warming has implications for the functioning of terrestrial Arctic ecosystems, global climate and socioeconomic systems of northern communities. A research gap exists in high spatial resolution monitoring and understanding of the seasonality of permafrost degradation, spring snowmelt and vegetation phenology. This thesis explores the diversity and utility of dense TerraSAR-X (TSX) X-Band time series for monitoring ice-rich riverbank erosion, snowmelt, and phenology of Arctic vegetation at long-term study sites in the central Lena Delta, Russia and on Qikiqtaruk (Herschel Island), Canada. In the thesis the following three research questions are addressed: • Is TSX time series capable of monitoring the dynamics of rapid permafrost degradation in ice-rich permafrost on an intra-seasonal scale and can these datasets in combination with climate data identify the climatic drivers of permafrost degradation? • Can multi-pass and multi-polarized TSX time series adequately monitor seasonal snow cover and snowmelt in small Arctic catchments and how does it perform compared to optical satellite data and field-based measurements? • Do TSX time series reflect the phenology of Arctic vegetation and how does the recorded signal compare to in-situ greenness data from RGB time-lapse camera data and vegetation height from field surveys? To answer the research questions three years of TSX backscatter data from 2013 to 2015 for the Lena Delta study site and from 2015 to 2017 for the Qikiqtaruk study site were used in quantitative and qualitative analysis complimentary with optical satellite data and in-situ time-lapse imagery. The dynamics of intra-seasonal ice-rich riverbank erosion in the central Lena Delta, Russia were quantified using TSX backscatter data at 2.4 m spatial resolution in HH polarization and validated with 0.5 m spatial resolution optical satellite data and field-based time-lapse camera data. Cliff top lines were automatically extracted from TSX intensity images using threshold-based segmentation and vectorization and combined in a geoinformation system with manually digitized cliff top lines from the optical satellite data and rates of erosion extracted from time-lapse cameras. The results suggest that the cliff top eroded at a constant rate throughout the entire erosional season. Linear mixed models confirmed that erosion was coupled with air temperature and precipitation at an annual scale, seasonal fluctuations did not influence 22-day erosion rates. The results highlight the potential of HH polarized X-Band backscatter data for high temporal resolution monitoring of rapid permafrost degradation. The distinct signature of wet snow in backscatter intensity images of TSX data was exploited to generate wet snow cover extent (SCE) maps on Qikiqtaruk at high temporal resolution. TSX SCE showed high similarity to Landsat 8-derived SCE when using cross-polarized VH data. Fractional snow cover (FSC) time series were extracted from TSX and optical SCE and compared to FSC estimations from in-situ time-lapse imagery. The TSX products showed strong agreement with the in-situ data and significantly improved the temporal resolution compared to the Landsat 8 time series. The final combined FSC time series revealed two topography-dependent snowmelt patterns that corresponded to in-situ measurements. Additionally TSX was able to detect snow patches longer in the season than Landsat 8, underlining the advantage of TSX for detection of old snow. The TSX-derived snow information provided valuable insights into snowmelt dynamics on Qikiqtaruk previously not available. The sensitivity of TSX to vegetation structure associated with phenological changes was explored on Qikiqtaruk. Backscatter and coherence time series were compared to greenness data extracted from in-situ digital time-lapse cameras and detailed vegetation parameters on 30 areas of interest. Supporting previous results, vegetation height corresponded to backscatter intensity in co-polarized HH/VV at an incidence angle of 31°. The dry, tall shrub dominated ecological class showed increasing backscatter with increasing greenness when using the cross polarized VH/HH channel at 32° incidence angle. This is likely driven by volume scattering of emerging and expanding leaves. Ecological classes with more prostrate vegetation and higher bare ground contributions showed decreasing backscatter trends over the growing season in the co-polarized VV/HH channels likely a result of surface drying instead of a vegetation structure signal. The results from shrub dominated areas are promising and provide a complementary data source for high temporal monitoring of vegetation phenology. Overall this thesis demonstrates that dense time series of TSX with optical remote sensing and in-situ time-lapse data are complementary and can be used to monitor rapid and seasonal processes in Arctic landscapes at high spatial and temporal resolution.
    Type of Medium: Dissertations
    Pages: XIII, 131 Seiten , Illustrationen
    Language: Undetermined
    Note: Dissertation, Universität Potsdam, 2019 , TABLE OF CONTENTS Abstract Zusammenfassung Table of contents List of figures List of tables List of abbreviations 1 Introduction 1.1 Scientific background and motivation 1.1.1 Permafrost degradation 1.1.2 Snow cover 1.1.3 Vegetation phenology 1.2 Remote sensing of rapid changes 1.2.1 SAR remote sensing 1.2.2 TerraSar-X 1.3 Data and methods 1.4 Aims and objectives 1.5 Study areas and data 1.6 Thesis structure and author contributions 1.6.1 Chapter 2 – Monitoring inter-and intra-seasonal dynamics of rapidly degrading ice-rich permafrost riverbanks in the Lena Delta with TerraSAR-X time series 1.6.2 Chapter 3 – TerraSAR-X time series fill a gap in spaceborne snowmelt monitoring of small Arctic catchments 1.6.3 Chapter 4 – Estimation of Arctic tundra vegetation phenology with TerraSAR-X 2 Monitoring inter-and intra-seasonal dynamics of rapidly degrading ice-rich permafrost riverbanks in the Lena Delta with TerraSAR-X time series 2.1 Abstract 2.2 Introduction 2.3 Study area 2.4 Data and methods 2.4.1 SAR data and processing 2.4.2 Automated cliff-top line extraction from SAR data 2.4.3 Quantification of cliff-top erosion with the Digital Shoreline Analysis System 2.4.4 Cliff top mapping from optical satellite data 2.4.5 In-situ observations of cliff top erosion 2.4.6 Climate data 2.4.7 Statistical data analysis 2.5 Results 2.5.1 TSX erosion versus in-situ and optical datasets 2.5.2 Inter-and intra-annual cliff-top erosion and climate data 2.5.3 Backscatter time series 2.6 Discussion 2.6.1 Inter-annual dynamics of cliff-top erosion 2.6.2 Intra-annual dynamics of cliff-top erosion 2.6.3 Backscatter dynamics of tundra and cliff surfaces 2.7 Conclusions 2.8 Acknowledgments 3 TerraSAR-X time series fill a gap in spaceborne snowmelt monitoring of small Arctic catchments 3.1 Abstract 3.2 Introduction 3.3 Study area 3.4 Data and methods 3.4.1 SAR satellite data 3.4.2 Optical satellite data 3.4.3 In-situ time-lapse camera data 3.4.4 Snow Cover Extent from TerraSAR-X 3.4.5 Snow Cover Extent from Landsat 8 3.4.6 Accuracy assessment of TerraSAR-X Snow Cover Extent 3.4.7 Fractional Snow Cover time series analysis 3.5 Results 3.5.1 Evaluation of TSX Snow Cover Extent 3.5.2 Time series of Fractional Snow Cover in all catchments 3.5.3 Time series of Fractional SnowCover in small catchments 3.6 Discussion 3.6.1 Spatiotemporal monitoring of snowmelt dynamics using TSX 3.6.2 Technical considerations for using TSX for wet snow detection 3.7 Conclusions 3.8 Acknowledgements 3.9 Appendix 4 Relationships between X-Band SAR and vegetation phenology in a low Arctic ecosystem 4.1 Abstract 4.2 Introduction 4.3 Study area 4.4 Data and methods 4.4.1 In-situ time-lapse phenological cameras 4.4.2 Time-lapse image analysis 4.4.3 SAR satellite data 4.4.4 Backscatter and coherence time series 4.4.5 In-situ vegetation and climate data 4.5 Results 4.5.1 Phenocams 4.5.2 Backscatter dynamics 4.5.3 Coherence dynamics 4.6 Climate data 4.7 Backscatter and vegetation height 4.8 Discussion 4.9 Conclusion 4.10 Acknowledgments 5 Synthesis 5.1 Rapid permafrost disturbance 5.2 Snowmelt dynamics 5.3 Arctic tundra vegetation phenology 5.4 Seasonality and complementarity of TSX 5.5 Limitations and technical considerations 5.6 Key findings and outlook References Acknowledgements
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Monograph available for loan
    Monograph available for loan
    Chicago : The University of Chicago Press
    Call number: M 19.92463
    Description / Table of Contents: The making of a scientist -- The boy from Potsdam -- At the gymnasium: father and son -- Becoming a medical doctor -- Undiscovered -- Gaining scientific renown -- Scientific networking -- In the private and the public eye -- The new dispensation -- Unhappy intermezzo in Bonn -- The turning point -- The new angel -- The relations of science -- The relations of music -- Popularizing science in Britain and Germany -- Learning to see the world -- Almost a professor of physics -- The road to Berlin -- Scientific grandee -- In the capital of Geist -- The burdens of building physics -- Among the elite -- Kulturkampf in science, I -- Kulturkampf in science, II -- Anti-Helmholtz, again -- In the scientific capitals of Europe -- Institutional brilliance -- Celebrations -- Doyen -- Science, art, and standards business -- Charismatic leader -- Atlantic crossings -- Epilogue: Helmholtz in modern German memory
    Type of Medium: Monograph available for loan
    Pages: viii, 937 Seiten , Illustrationen
    ISBN: 9780226481142 , 9780226549163
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Monograph available for loan
    Monograph available for loan
    Oxford : Oxford University Press
    Keywords: Anthropozän ; Anthropogener Einfluss ; Humanökologie
    Description / Table of Contents: Origins -- Earth system -- Geologic time -- The great acceleration -- Anthropos -- Oikos -- Politikos -- Prometheus
    Type of Medium: Monograph available for loan
    Pages: xxii, 183 Seiten , Illustrationen, Diagramme, Karten
    Edition: First edition
    ISBN: 0198792980 , 9780198792987
    Series Statement: Very short introductions 558
    Language: English
    Branch Library: IASS Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Keywords: Humboldt, Alexander von 1769-1859 ; Forschungsreise ; Naturgeschichte
    Description / Table of Contents: Alexander von Humboldt (1769-1859) is the great lost scientist: more things are named after him than anyone else. There are towns, rivers, mountain ranges, the ocean current that runs along the South American coast, there's a penguin, a giant squid - even the Mare Humboldtianum on the moon. His colourful adventures read like something out of a Boy's Own story: Humboldt explored deep into the rainforest, climbed the world's highest volcanoes and inspired princes and presidents, scientists and poets alike. He simply was, as one contemporary put it, 'the greatest man since the Deluge'. Taking us on a fantastic voyage in his footsteps - racing across anthrax-infected Russia or mapping tropical rivers alive with crocodiles - Andrea Wulf shows why his life and ideas remain so important today. Humboldt predicted human-induced climate change as early as 1800, and 'The Invention of Nature' traces his ideas as they go on to revolutionize and shape science, conservation, nature writing, politics, art and the theory of evolution. He wanted to know and understand everything and his way of thinking was so far ahead of his time that it's only coming into its own now. Alexander von Humboldt really did invent the way we see nature
    Type of Medium: Monograph available for loan
    Pages: XXI, 473 Seiten, [8] ungezählte Seiten , Illustrationen
    ISBN: 9781848548985 , 9781848549005 , 9781848548992 , 1848548982
    Parallel Title: Rezensiert in Weigl, Engelhard [Rezension von: Wulf, Andrea, 1972-, The invention of nature], in: Das achtzehnte Jahrhundert : Zeitschrift der Deutschen Gesellschaft für die Erforschung des Achtzehnten Jahrhunderts, ISSN 0722-740X, ZDB-ID 6847-0
    Language: English
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Monograph available for loan
    Monograph available for loan
    New York : Cambridge University Press
    Call number: IASS 19.92441
    Type of Medium: Monograph available for loan
    Pages: xiii, 450 Seiten
    ISBN: 9781108422482 , 1108422489
    Language: English
    Branch Library: IASS Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Monograph available for loan
    Monograph available for loan
    [Roskilde] : DCE - Danish Centre for Environment and Energy, Aarhus University
    Call number: AWI P5-19-92578
    Type of Medium: Monograph available for loan
    Pages: 148 Seiten , Illustrationen
    Edition: First edition
    ISBN: 978-87-93129-13-9
    Language: English
    Note: CONTENTS ABOUT THE AUTHORS PREFACE FROM THE ASSOCIATION OF POLAR EARLY CAREER SCIENTISTS PREFACE FROM THE INTERACT STATION MANAGERS’ FORUM ABOUT INTERACT ABOUT APECS INTERACT STATIONS INTRODUCTION 1. Getting started – Outlining your field project 1.1 Scientific rationale and objectives 1.2 Methods and data requirements 1.3 What scientific equipment will you need? 1.4 Study site(s) 1.5 Risk assessment 1.5.1 Risk identification 1.5.2 Risk assessment 1.5.3 Risk mitigation 1.5.4 Contingency plans 1.6 Time schedules 1.6.1 Logistical organisation 1.6.2 Fieldwork activities 1.7 Project budget 1.8 Data and sample management 1.8.1 Data management plan 1.8.2 Sample labelling 1.8.3 Field instrumentation 1.9 Environmental compliance 1.10 Output Chapter resources 2. Further planning – Practicalities and legal issues 2.1 Applying for access to the station 2.2 Transport to the station and conditions for visiting 2.2.1 Access to the station 2.2.2 Conditions for visiting 2.3 Visas and permits required by national authorities 2.3.1 Visas 2.3.2 Permits 2.4 Working with local communities 2.5 Equipment transport 2.6 Checklists and equipment 2.6.1 Checklists 2.6.2 Personal clothing 2.7 Import and export regulations 2.7.1 Import and export permits 2.7.2 Transporting hazardous goods 2.7.3 Handling cooled and frozen materials 2.8 Insurance 2.9 Check-ups and chronical illness 2.10 Training activities 2.11 Financial and other administrative issues 2.12 Final checks before leaving Chapter resources 3. Safety 3.1 General safety guidelines 3.2 Safety barriers 3.2.1 Knowledge, experience, and skills 3.2.2 Attitude and culture 3.2.3 Judgement and leadership 3.2.4 Trip plan 3.3 Education and training 3.4 Health and first aid 3.4.1 Medicine and chronic illness 3.4.2 First aid 3.5 Transport 3.5.1 Aircraft 3.5.2 Boats 3.5.3 Snowmobiles 3.5.4 Vehicles (Automobiles and ATV’s) 3.6 Risks at the station 3.6.1 Fire 3.6.2 In the kitchen 3.6.3 Electricity 3.6.4 Hygiene 3.6.5 Laboratory work and chemicals 3.6.6 Workshops and equipment use 3.7 Risks in the field and at the camp 3.7.1 Field camps 3.7.2 Cooking and water treatment 3.7.3 Firearms 3.7.4 Extreme activities 3.8 Natural hazards 3.8.1 Weather change 3.8.2 Glacier fieldwork 3.8.3 Snow avalanches and cornice falls 3.8.4 Steep terrain: Rock avalanches, rock falls, and mud slides 3.8.5 Sea-ice or frozen lakes and rivers 3.8.6 River crossings 3.8.7 Wildlife 3.9 Means of communication 3.9.1 Fieldwork plans and sign in/out boards 3.9.2 Routine calls 3.9.3 Non-routine calls 3.9.4 Emergency calls 3.10 Safety equipment 3.10.1 Communication equipment 3.10.2 Navigation equipment 3.10.3 Clothing 3.10.4 Field camp equipment 3.10.5 Specific safety equipment 3.11 Emergency preparedness Chapter resources 4. Arrival at the station and your time in the field 4.1 Getting to know your team 4.2 Arrival at the station 4.3 Working at field sites 4.4 In case something does not go according to plan 4.4.1 Handling delays 4.4.2 Handling conflicts 4.4.3 Harassment and discrimination 4.5 Environmental considerations 4.5.1 Pollution prevention 4.5.2 Waste management 4.5.3 Reducing energy use 4.5.4 Respect protected areas, fauna, and flora 4.6 Working with local communities 4.7 Communication with the outside world 4.8 Leaving the field Chapter resources 5. After fieldwork 5.1 Reporting to the station, funders, and local communities 5.2 Data preservation, backup, and submission APPENDICES Appendix A: Checklists Appendix B: Equipment lists Appendix C: Health risks
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Call number: M 19.92509
    Description / Table of Contents: Derived from an undergraduate course taught by the author, this accessible book seeks to challenge and provoke readers by posing a series of topical questions concerning climate change and society. Topic summaries provide answers to technical, socio-economic and moral questions surrounding the deployment of climate science. These include how to build and test a climate model, whom and what is most at risk from climate change, and whether we should geoengineer the climate. Practical exercises and case studies provide deeper insights by taking readers through role-play activities and authentic climate change projects. Supporting materials, including notes for instructors and students, graphics, video-clips, games, and online resources, offer scope for further private study and group work. With a focus on applying climate science in practice, this book is ideal for students of geography, natural science, engineering and economics, as well as practitioners involved in the climate service industry
    Type of Medium: Monograph available for loan
    Pages: xiii, 351 Seiten , Illustrationen
    ISBN: 978-1-316-50777-3
    Classification: D.4.
    Language: English
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Monograph available for loan
    Monograph available for loan
    Wiesbaden : Springer VS
    Call number: M 19.92552
    Type of Medium: Monograph available for loan
    Pages: XIX, 451 Seiten , Diagramme
    ISBN: 978-3-658-22408-0
    Language: German
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...