ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Last 14 Days Catalog Additions

Export
Filter
  • Cambridge : Cambridge University Press  (1)
  • Hannover : Fachrichtung Geodäsie und Geoinformatik der Leibniz Unviersität Hannover  (1)
  • Potsdam  (1)
  • Heidelberg : O'Reilly
  • New York, NY : Citadel Press
Collection
Publisher
Language
Years
  • 1
    facet.materialart.12
    Cambridge : Cambridge University Press
    Call number: 9781107306189 (e-book)
    Description / Table of Contents: "The Earth is a dynamic system. Internal processes, together with external gravitational forces of the Sun, Moon and planets, displace the Earth's mass, impacting on its shape, rotation and gravitational field. Doug Smylie provides a rigorous overview of the dynamical behaviour of the solid Earth, explaining the theory and presenting methods for numerical implementation. Topics include advanced digital analysis, earthquake displacement fields, Free Core Nutations observed by the Very Long Baseline Interferometric technique, translational modes of the solid inner core observed by the superconducting gravimeters, and dynamics of the outer fluid core. This book is supported by freeware computer code, available online for students to implement the theory. Online materials also include a suite of graphics generated from the numerical analysis, combined with 100 graphic examples in the book to make this an ideal tool for researchers and graduate students in the fields of geodesy, seismology and solid earth geophysics"--
    Type of Medium: 12
    Pages: 1 Online-Ressource (XII, 543 Seiten) , Illustrationen
    Edition: Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
    ISBN: 9781107306189
    Language: English
    Note: Contents Preface and acknowledgments The book website www.cambridge.org/smylie 1 Introduction and theoretical background 1.1 Scalar, vector and tensor analysis 1.2 Separation of vector fields 1.3 Vector spherical harmonics 1.4 Elasticity theory 1.5 Linear algebraic systems 1.6 Interpolation and approximation 2 Time sequence and spectral analysis 2.1 Time domain analysis 2.2 Linear optimum Wiener filters 2.3 Frequency domain analysis 2.4 Fourier series and transforms 2.5 Power spectral density estimation 2.6 Maximum entropy spectral analysis 3 Earth deformations 3.1 Equilibrium equations 3.2 The reciprocal theorem of Betti 3.3 Radial equations: spheroidal and torsional 3.4 Dynamical equations 3.5 Solutions near the geocentre 3.6 Numerical integration of the radial equations 3.7 Fundamental, regular solutions in the inner core 4 Earth's rotation: observations and theory 4.1 Reference frames 4.2 Polar motion and wobble 4.3 The dynamics of polar motion and wobble 4.4 Nutation and motion of the celestial pole 5 Earth's figure and gravitation 5.1 Historical development 5.2 External gravity and figure 5.3 Equilibrium theory of the internal figure 5.4 Gravity coupling 6 Rotating fluids and the outer core 6.1 The inertial wave equation 6.2 Dynamics of the fluid outer core 6.3 Scaling of the core equations 6.4 Compressibility and density stratification 7 The subseisniic equation and boundary conditions 7.1 The subseismic wave equation 7.2 Deformation of the shell and inner core 8 Variational methods and core modes 8.1 A subseismic variational principle 8.2 Representation of the functional 8.3 Finite element support functions 8.4 Boundary conditions and constraints 8.5 Numerical implementation and results 8.6 Rotational splitting and viscosity 8.7 A viscosity profile for the outer core 9 Static deformations and dislocation theory 9.1 The elasticity theory of dislocations 9.2 The theory for realistic Earth models 9.3 Changes in the inertia tensor and the secular polar shift Appendix A Elementary results from vector analysis A.1 Vector identities A.2 Vector calculus identities A.3 Integral theorems Appendix B Properties of Legendre functions B.1 Recurrence relations B.2 Evaluation of Legendre functions Appendix C Numerical Earth models C.1 The Earth models References Fortran index Subject index
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: PIK 24-95752
    In: Sachbericht
    Type of Medium: Monograph available for loan
    Pages: 77 Seiten
    Series Statement: Sachbericht
    Language: German
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Series available for loan
    Series available for loan
    Hannover : Fachrichtung Geodäsie und Geoinformatik der Leibniz Unviersität Hannover
    Associated volumes
    Call number: S 99.0139(395)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 395
    Description / Table of Contents: Die hochgenaue, geometrische Erfassung von Objekten und deren Umfeld mit geodätischen Messsystemen wie Lasertrackern und 3D Laserscannern wird bereits seit einigen Jahren durchgeführt. Bei langgezogenen Profilen, z. B. Führungs-, Fahr-, und Leitschienen, mit Längen von bis zu mehreren hundert Metern, wie sie bei Kranbahnen oder Hochregallagern vorkommen, ist bisher eine punktuelle, linienhafte Erfassung üblich. Aus den Messdaten werden Zustandsgrößen abgeleitet, die in Richtlinien, wie z. B. der VDI 3576 beschrieben sind. Zur Reduzierung der Absturzgefahr beim Signalisieren hochliegender Schienenprofile und zur Beschleunigung des Messprozesses, können motorisierte Plattformen für den Transport von Reflektoren eingesetzt werden. Es wird ein Bewegungs- und Auswertemodell für ein mit hoher Abtastrate messendes kinematisches System erarbeitet, so dass die tatsächliche Lage von Führungs-, Fahr-, und Leitschienen mit einer Unsicherheit im Submillimeterbereich bestimmt werden kann. Damit die Messung für die Praxis relevant wird, können die Ergebnisse unmittelbar ausgewertet werden. Aus den Messdaten lassen sich für eine objektive Beurteilung des Zustands von Profilen und Befestigungen folgende Zustandsparameter ableiten: Lage, Z-Werte, Neigung und Zustand der Schiene und deren Befestigung. Die Qualität der Messungen und Zustandsparameter lässt sich qualitätsgesichert durch Auflösung und Standardabweichung nachweisen.
    Description / Table of Contents: The high-precision, geometric capture of objects and their surroundings with geodetic measurement systems such as laser trackers and 3D laser scanners has already been carried out for several years. In the case of elongated profiles, e.g. guide rails, carriage rails and guard rails, with lengths of up to several hundred meters, such as those found in crane runways or high-bay warehouses, a point-by-point, line-by-line recording has been common practice up to now. Condition variables are derived from the measurement data, which are described in guidelines such as VDI 3576. To reduce the risk of falling when signaling high-lying profiles and to speed up the measurement process, motorized platforms can be used to transport reflectors. A motion and evaluation model for a kinematic system measuring at a high sampling rate will be developed, so that the actual position of guide rails can be determined with an uncertainty in the submillimeter range. To make the measurement relevant for practical applications, the results can be evaluated immediately.
    Type of Medium: Series available for loan
    Pages: 158 Seiten , Illustrationen, Tabellen, Diagramme , 30 cm
    ISSN: 01741454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 395
    Language: German
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2024 , Abkürzungsverzeichnis ix 1 Einleitung 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Zielsetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Aufbau der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Stand der Technik im Bereich der Vermessung von Schienenanlagen der Intralogistik 5 2.1 Elemente von Schienenanlagen der Intralogistik . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Schienen und Profilstähle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Schienenlagerungssysteme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Schienenstöße, Festpunkte, Endbegrenzer, An- und Einbauten . . . . . . . . . 11 2.1.4 Schienengebundene Krane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Rechtlicher Rahmen, Richtlinien und klassische Zustandsgrößen . . . . . . . . . . . . 16 2.2.1 Rechtlicher Rahmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Richtlinien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 Klassische Zustandsgrößen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.4 Kritische Betrachtung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Vermessung von Schienenanlagen der Intralogistik . . . . . . . . . . . . . . . . . . . 19 2.3.1 Koordinatensystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Vermessung mit Theodolit, Bandmaß und Nivellier . . . . . . . . . . . . . . . 21 2.3.3 Alignierverfahren mit Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.4 Vermessung mit Tachymeter oder Lasertracker . . . . . . . . . . . . . . . . . 25 2.3.5 Automatisierte Systeme mit georeferenzierendem Sensor . . . . . . . . . . . . 25 3 Grundlagen zur Bestimmung der geometrischen Zustandsgrößen von Profilen 31 3.1 Rekursive Filterung im Zustandsraum . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.1 Wahrscheinlichkeiten, Satz von Bayes, Verteilungen . . . . . . . . . . . . . . . 31 3.1.2 Bayes Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1.3 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1.4 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.5 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.6 Unscented Rauch Tung Striebel Smoother . . . . . . . . . . . . . . . . . . . . 39 3.1.7 Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 Geometrische Modellierung von Kurven . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.1 Polynome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.2 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.3 B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Profilvermessungssystem 49 4.1 Neue Zustandsgrößen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Sensorik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.1 Georeferenzierender Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.2 Profillaserscanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.3 Kameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 xii Inhaltsverzeichnis 4.2.4 Inklinometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.5 Inertiale Messeinheit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2.6 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2.7 Ultraschallsensoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2.8 Sensorintegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 Profilvermessungssystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.1 Plattform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.2 Antriebseinheit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.3 Seitenführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3.4 Schwingen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.5 Halterung Sensorik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.6 Drehvorrichtung für Reflektor . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4 Erreichbare Messunsicherheiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.5 Datensynchronisierung und Datenhaltungskonzept . . . . . . . . . . . . . . . . . . . 65 4.5.1 Anforderung an die Synchronisierung . . . . . . . . . . . . . . . . . . . . . . . 66 4.5.2 Synchronisierung über die Zeit . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.5.3 Synchronisierung im Objektraum . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.5.4 Datenhaltungskonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.6 Kalibrierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6.1 Komponentenkalibrierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6.2 Systemkalibrierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5 Zustandsgrößen einer überarbeiteten VDI 3576 83 5.1 Messdatenerfassung und -aufbereitung . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.1.1 Messdatenerfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.1.2 Orientierungsparameter aus Positionsdaten . . . . . . . . . . . . . . . . . . . 83 5.1.3 Aufbereitung der Lasertracker- oder Tachymeterdaten . . . . . . . . . . . . . 86 5.1.4 Korrektur der Beschleunigungswerte von der Erdschwere . . . . . . . . . . . . 88 5.1.5 Korrektur der Inklinometermesswerte von Beschleunigungseinflüssen . . . . . 89 5.1.6 Korrektur der Längs- und Querablage . . . . . . . . . . . . . . . . . . . . . . 89 5.2 Sensorfusion für die Georeferenzierung des Profilmesswagens . . . . . . . . . . . . . . 89 5.2.1 Quaternionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.2 Adaptive Filterung der Inertial Measurment Unit (IMU)-Messwerte . . . . . 92 5.2.3 Funktionales Modell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.2.4 Stochastisches Modell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2.5 Steigerung der Zuverlässigkeit der Filterung . . . . . . . . . . . . . . . . . . . 99 6 Testmessung und Validierung des kinematischen Multisensorsystems 101 6.1 Durchführung einer kinematischen Schienenmessung mit dem Profilvermessungssystem101 6.2 Qualitätssicherung des Messprozesses . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3 Messkampagne I: Messung unter Laborbedingungen . . . . . . . . . . . . . . . . . . 102 6.3.1 Auswertung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.3.2 Einfacher Ansatz zum Finden weiterer Zustandsgrößen . . . . . . . . . . . . . 111 6.3.3 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.4 Messkampagne II: Messung unter realen Bedingungen . . . . . . . . . . . . . . . . . 113 6.4.1 Messumgebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4.2 Messkonzept und Netzplanung . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4.3 Ergebnisse und Bewertung der Netzmessung . . . . . . . . . . . . . . . . . . . 115 6.5 Qualitätsaussagen zu dem Profilvermessungssystem . . . . . . . . . . . . . . . . . . . 116 6.5.1 Bewertung der Kalibrierparameter . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5.
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...