ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (883)
Collection
  • Articles  (883)
Publisher
Years
Journal
Topic
  • 1
    Publication Date: 2021-08-20
    Description: With the discovery of the incredible diversity of neurons, Cajal and coworkers laid the foundation of modern neuroscience. Neuron types are not only structural units of nervous systems but also evolutionary units, because their identities are encoded in the genome. With the advent of high-throughput cellular transcriptomics, neuronal identities can be characterized and compared systematically across species. The comparison of neurons in mammals, reptiles, and birds indicates that the mammalian cerebral cortex is a mosaic of deeply conserved and recently evolved neuron types. Using the cerebral cortex as a case study, this review illustrates how comparing neuron types across species is key to reconciling observations on neural development, neuroanatomy, circuit wiring, and physiology for an integrated understanding of brain evolution. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1081-0706
    Electronic ISSN: 1530-8995
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-10
    Description: Calcium (Ca2+) is a unique mineral that serves as both a nutrient and a signal in all eukaryotes. To maintain Ca2+ homeostasis for both nutrition and signaling purposes, the toolkit for Ca2+ transport has expanded across kingdoms of eukaryotes to encode specific Ca2+ signals referred to as Ca2+ signatures. In parallel, a large array of Ca2+-binding proteins has evolved as specific sensors to decode Ca2+ signatures. By comparing these coding and decoding mechanisms in fungi, animals, and plants, both unified and divergent themes have emerged, and the underlying complexity will challenge researchers for years to come. Considering the scale and breadth of the subject, instead of a literature survey, in this review we focus on a conceptual framework that aims to introduce to readers to the principles and mechanisms of Ca2+ signaling. We finish with several examples of Ca2+-signaling pathways, including polarized cell growth, immunity and symbiosis, and systemic signaling, to piece together specific coding and decoding mechanisms in plants versus animals. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1081-0706
    Electronic ISSN: 1530-8995
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-06
    Description: Thriving in times of resource scarcity requires an incredible flexibility of behavioral, physiological, cellular, and molecular functions that must change within a relatively short time. Hibernation is a collection of physiological strategies that allows animals to inhabit inhospitable environments, where they experience extreme thermal challenges and scarcity of food and water. Many different kinds of animals employ hibernation, and there is a spectrum of hibernation phenotypes. Here, we focus on obligatory mammalian hibernators to identify the unique challenges they face and the adaptations that allow hibernators to overcome them. This includes the cellular and molecular strategies used to combat low environmental and body temperatures and lack of food and water. We discuss metabolic, neuronal, and hormonal cues that regulate hibernation and how they are thought to be coordinated by internal clocks. Last, we touch on questions that are left to be addressed in the field of hibernation research. Studies from the last century and more recent work reveal that hibernation is not simply a passive reduction in body temperature and vital parameters but rather an active process seasonally regulated at the molecular, cellular, and organismal levels.
    Print ISSN: 1081-0706
    Electronic ISSN: 1530-8995
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-06
    Description: Gene transcription by RNA polymerase II (Pol II) is the first step in the expression of the eukaryotic genome and a focal point for cellular regulation during development, differentiation, and responses to the environment. Two decades after the determination of the structure of Pol II, the mechanisms of transcription have been elucidated with studies of Pol II complexes with nucleic acids and associated proteins. Here we provide an overview of the nearly 200 available Pol II complex structures and summarize how these structures have elucidated promoter-dependent transcription initiation, promoter-proximal pausing and release of Pol II into active elongation, and the mechanisms that Pol II uses to navigate obstacles such as nucleosomes and DNA lesions. We predict that future studies will focus on how Pol II transcription is interconnected with chromatin transitions, RNA processing, and DNA repair.
    Print ISSN: 1081-0706
    Electronic ISSN: 1530-8995
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-10-06
    Description: Development encapsulates the morphogenesis of an organism from a single fertilized cell to a functional adult. A critical part of development is the specification of organ forms. Beyond the molecular control of morphogenesis, shape in essence entails structural constraints and thus mechanics. Revisiting recent results in biophysics and development, and comparing animal and plant model systems, we derive key overarching principles behind the formation of organs across kingdoms. In particular, we highlight how growing organs are active rather than passive systems and how such behavior plays a role in shaping the organ. We discuss the importance of considering different scales in understanding how organs form. Such an integrative view of organ development generates new questions while calling for more cross-fertilization between scientific fields and model system communities.
    Print ISSN: 1081-0706
    Electronic ISSN: 1530-8995
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-10-06
    Description: Plants constantly perceive internal and external cues, many of which they need to address to safeguard their proper development and survival. They respond to these cues by selective activation of specific metabolic pathways involving a plethora of molecular players that act and interact in complex networks. In this review, we illustrate and discuss the complexity in the combinatorial control of plant specialized metabolism. We hereby go beyond the intuitive concept of combinatorial control as exerted by modular-acting complexes of transcription factors that govern expression of specialized metabolism genes. To extend this discussion, we also consider all known hierarchical levels of regulation of plant specialized metabolism and their interfaces by referring to reported regulatory concepts from the plant field. Finally, we speculate on possible yet-to-be-discovered regulatory principles of plant specialized metabolism that are inspired by knowledge from other kingdoms of life and areas of biological research.
    Print ISSN: 1081-0706
    Electronic ISSN: 1530-8995
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-10-06
    Description: Neutrophils are critical to innate immunity, including host defense against bacterial and fungal infections. They achieve their host defense role by phagocytosing pathogens, secreting their granules full of cytotoxic enzymes, or expelling neutrophil extracellular traps (NETs) during the process of NETosis. NETs are weblike DNA structures decorated with histones and antimicrobial proteins released by activated neutrophils. Initially described as a means for neutrophils to neutralize pathogens, NET release also occurs in sterile inflammation, promotes thrombosis, and can mediate tissue damage. To effectively manipulate this double-edged sword to fight a particular disease, researchers must work toward understanding the mechanisms driving NETosis. Such understanding would allow the generation of new drugs to promote or prevent NETosis as needed. While knowledge regarding the (patho)physiological roles of NETosis is accumulating, little is known about the cellular and biophysical bases of this process. In this review, we describe and discuss our current knowledge of the molecular, cellular, and biophysical mechanisms mediating NET release as well as open questions in the field.
    Print ISSN: 1081-0706
    Electronic ISSN: 1530-8995
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-06
    Description: The brain is our most complex organ. During development, neurons extend axons, which may grow over long distances along well-defined pathways to connect to distant targets. Our current understanding of axon pathfinding is largely based on chemical signaling by attractive and repulsive guidance cues. These cues instruct motile growth cones, the leading tips of growing axons, where to turn and where to stop. However, it is not chemical signals that cause motion—motion is driven by forces. Yet our current understanding of the mechanical regulation of axon growth is very limited. In this review, I discuss the origin of the cellular forces controlling axon growth and pathfinding, and how mechanical signals encountered by growing axons may be integrated with chemical signals. This mechanochemical cross talk is an important but often overlooked aspect of cell motility that has major implications for many physiological and pathological processes involving neuronal growth.
    Print ISSN: 1081-0706
    Electronic ISSN: 1530-8995
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-10-06
    Description: The proto-oncogenic epidermal growth factor (EGF) receptor (EGFR) is a tyrosine kinase whose sensitivity and response to growth factor signals that vary over time and space determine cellular behavior within a developing tissue. The molecular reorganization of the receptors on the plasma membrane and the enzyme-kinetic mechanisms of phosphorylation are key determinants that couple growth factor binding to EGFR signaling. To enable signal initiation and termination while simultaneously accounting for suppression of aberrant signaling, a coordinated coupling of EGFR kinase and protein tyrosine phosphatase activity is established through space by vesicular dynamics. The dynamical operation mode of this network enables not only time-varying growth factor sensing but also adaptation of the response depending on cellular context. By connecting spatially coupled enzymatic kinase/phosphatase processes and the corresponding dynamical systems description of the EGFR network, we elaborate on the general principles necessary for processing complex growth factor signals.
    Print ISSN: 1081-0706
    Electronic ISSN: 1530-8995
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-06
    Description: The generation of all blood cell lineages (hematopoiesis) is sustained throughout the entire life span of adult mammals. Studies using cell transplantation identified the self-renewing, multipotent hematopoietic stem cells (HSCs) as the source of hematopoiesis in adoptive hosts and delineated a hierarchy of HSC-derived progenitors that ultimately yield mature blood cells. However, much less is known about adult hematopoiesis as it occurs in native hosts, i.e., without transplantation. Here we review recent advances in our understanding of native hematopoiesis, focusing in particular on the application of genetic lineage tracing in mice. The emerging evidence has established HSCs as the major source of native hematopoiesis, helped to define the kinetics of HSC differentiation, and begun exploring native hematopoiesis in stress conditions such as aging and inflammation. Major outstanding questions about native hematopoiesis still remain, such as its clonal composition, the nature of lineage commitment, and the dynamics of the process in humans.
    Print ISSN: 1081-0706
    Electronic ISSN: 1530-8995
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...