ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (323)
Collection
  • Articles  (323)
Publisher
Years
Journal
  • 1
    Publication Date: 2021-02-12
    Description: The enormous problems caused by the scarcity of potable water and the transmission of waterborne diseases such as cholera, dracunculiasis, hepatitis, typhoid and filariasis in some parts of Nigeria have created a public health concern. Every day thousands of lives are lost due to contact with waterborne diseases. The insufficient medical resources available in developing countries are deployed towards the treatment of waterborne diseases that can easily be avoided if potable water can be made available. This study seeks to investigate the purification of four different water samples (namely water from flowing rivers, freshly dug well or groundwater, rainwater from the rooftops and heavily polluted dirty water) consumed by the people in the local community using a solar desalination method. A single basin solar still was constructed, and experimental studies were carried out to determine the influence of solar insolation and temperature variations on the yield of the distillate for both the passive and active solar stills tested. The quality of the distillate was tested by measuring the total dissolved solid (TDS) and electrical conductivity (EC) and later comparing it to the World Health Organization (WHO) standard for drinkable water. The values obtained after desalination fall within the acceptable/tolerable range for TDS and EC, in accordance with the WHO standard for drinkable water. This analysis provides an indigenous distillation method to enhance the production of drinkable water at a low cost.
    Print ISSN: 1996-9457
    Electronic ISSN: 1996-9465
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of Delft University of Technology.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-11
    Description: It is common for bottled water and other assorted drinks to be seen displayed outside stores and in the sun in most parts of Nigeria. The country is mostly hot year-round, and over the course of the year, temperatures can rise to as high as 40 ∘C around March–April in the study area. The leaching effect of chemicals from polyethylene terephthalate (PET) bottled water was investigated for five commercially available bottled water brands. Temperature, pH, antimony, bisphenol A (BPA), and nitrate levels were measured on days 0, 14, and 28 for control samples and samples exposed to direct sunlight, using destructive sampling technique. Antimony was not detected in brands A, B, and E in the baseline measurement at day 0, while brands C and D had low values; after 28 d all the control samples still had antimony levels within the United States Environmental Protection Agency (US EPA) standard. Meanwhile, all the samples exposed to sunlight exceeded US EPA standard levels at 14 and 28 d, except brand A which was within limit at 14 d with value of 4.59 µg L−1. All control and exposed samples were below the European Union Drinking Water Directive (EU DWD) total daily intake (TDI) of BPA (0.05 mg per kilogram of body weight)−1 d−1. Values obtained for nitrate showed that all control samples did not exceed the US EPA guideline level for nitrates in drinking water for days 0, 14, and 28, while three of the samples, i.e. brands C, D, and E, exceeded the guideline level at day 28. Exposure of bottled water to sunlight was seen to impair the quality of the water for consumption.
    Print ISSN: 1996-9457
    Electronic ISSN: 1996-9465
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of Delft University of Technology.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-09
    Description: Natural particles are frequently applied in drinking water treatment processes in fixed bed reactors, fluidised bed reactors, and sedimentation processes to clarify water and to concentrate solids. When particles settle, it has been found that, in terms of hydraulics, natural particles behave differently when compared to perfectly round spheres. To estimate the terminal settling velocity of single solid particles in a liquid system, a comprehensive collection of equations is available. For perfectly round spheres, the settling velocity can be calculated quite accurately. However, for naturally polydisperse non-spherical particles, experimentally measured settling velocities of individual particles show considerable spread from the calculated average values. This work aims to analyse and explain the different causes of this spread. To this end, terminal settling experiments were conducted in a quiescent fluid with particles varying in density, size, and shape. For the settling experiments, opaque and transparent spherical polydisperse and monodisperse glass beads were selected. In this study, we also examined drinking-water-related particles, like calcite pellets and crushed calcite seeding material grains, which are both applied in drinking water softening. Polydisperse calcite pellets were sieved and separated to acquire more uniformly dispersed samples. In addition, a wide variety of grains with different densities, sizes, and shapes were investigated for their terminal settling velocity and behaviour. The derived drag coefficient was compared with well-known models such as the one of Brown and Lawler (2003). A sensitivity analysis showed that the spread is caused, to a lesser extent, by variations in fluid properties, measurement errors, and wall effects. Natural variations in specific particle density, path trajectory instabilities, and distinctive multi-particle settling behaviour caused a slightly larger degree of the spread. In contrast, a greater spread is caused by variations in particle size, shape, and orientation. In terms of robust process designs and adequate process optimisation for fluidisation and sedimentation of natural granules, it is therefore crucial to take into consideration the influence of the natural variations in the settling velocity when using predictive models of round spheres.
    Print ISSN: 1996-9457
    Electronic ISSN: 1996-9465
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of Delft University of Technology.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: The forward osmosis (FO) process has been considered for desalination as a competitive option with respect to the traditional reverse osmosis process. The interfacial polymerization (IP) reaction between two monomers (i.e., m-phenylenediamine, MPD, and 1,3,5-benzenetricarbonyl chloride, TMC) is typically used to prepare the selective polyamide layer that prevents salts and allows water molecules to pass. In this research, we investigated the effect of preparation conditions (MPD contact time, TMC reaction time, and addition of an amine salt) on the FO performance in terms of water flux and salt flux. The results showed that increasing MPD contact time resulted in a significant increase in the water flux and salt flux. However, increasing TMC reaction time caused a decline in both the water flux and the salt flux. The optimum condition that gave the highest water flux (64 L m−2 h−1) was found to be as 5 min for MPD and 1 min for TMC. The addition of an amine salt of camphorsulfonic acid-triethylamine (CSA-TEA) was able to have an apparent effect on the FO process by increasing the water flux (74.5 L m−2 h−1).
    Print ISSN: 1996-9457
    Electronic ISSN: 1996-9465
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of Delft University of Technology.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-10-28
    Description: The forward osmosis (FO) process has been considered to be a viable option for water desalination in comparison to the traditional processes like reverse osmosis, regarding energy consumption and economical operation. In this work, a polyacrylonitrile (PAN) nanofiber support layer was prepared using the electrospinning process as a modern method. Then, an interfacial polymerization reaction between m-phenylenediamine (MPD) and trimesoyl chloride (TMC) was carried out to generate a polyamide selective thin-film composite (TFC) membrane on the support layer. The TFC membrane was tested in FO mode (feed solution facing the active layer) using the standard methodology and compared to a commercially available cellulose triacetate membrane (CTA). The synthesized membrane showed a high performance in terms of water flux (16 Lm −2 h−1) but traded the salt rejection (4 gm−2 h−1) compared with the commercial CTA membrane (water flux = 13 Lm−2 h−1 and salt rejection = 3 gm−2 h−1) at no applied pressure and room temperature. Scanning electron microscopy (SEM), contact angle, mechanical properties, porosity, and performance characterizations were conducted to examine the membrane.
    Print ISSN: 1996-9457
    Electronic ISSN: 1996-9465
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of Delft University of Technology.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-09-25
    Description: Safe drinking water is one of the basic human needs. Poor quality of drinking water is directly associated with various waterborne diseases. The present study has attempted to analyze the household preferences for drinking water sources and the adoption of household water treatment (HWT) in Pakistan by using the household data of Pakistan Demographic and Health Survey 2017–2018 (PDHS, 2018). This study found that people living in rural areas, those with older heads of household and those with large family sizes are significantly less likely to use water from bottled or filtered water. Households with media exposure, education, women's empowerment in household purchases and high incomes are more likely to use bottled or filtered water. Similarly, households are more likely to adopt HWT in urban areas, when there is a higher level of awareness (through education and media), higher incomes, women enjoy a higher level of empowerment, and piped water is already used. However, households that use water from wells and have higher family sizes are less likely to adopt water purifying methods at home.
    Print ISSN: 1996-9457
    Electronic ISSN: 1996-9465
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of Delft University of Technology.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-09-21
    Description: The role of a drinking water distribution network (DWDN) is to supply high-quality water at the necessary pressure at various times of the day for several consumption scenarios. Locating and identifying water leakage areas has become a major concern for managers of the water supply, to optimize and improve constancy of supply. In this paper, we present the results of field research conducted to detect and to locate leaks in the DWDN focusing on the resolution of the Fixed And Variable Area Discharge (FAVAD) equation by use of the prediction algorithms in conjunction with hydraulic modeling and the Geographical Information System (GIS). The leak localization method is applied in the oldest part of Casablanca. We have used, in this research, two methodologies in different leak episodes: (i) the first episode is based on a simulation of artificial leaks on the MATLAB platform using the EPANET code to establish a database of pressures that describes the network's behavior in the presence of leaks. The data thus established have been fed into a machine learning algorithm called random forest, which will forecast the leakage rate and its location in the network; (ii) the second was field-testing a real simulation of artificial leaks by opening and closing of hydrants, on different locations with a leak size of 6 and 17 L s−1. The two methods converged to comparable results. The leak position is spotted within a 100 m radius of the actual leaks.
    Print ISSN: 1996-9457
    Electronic ISSN: 1996-9465
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of Delft University of Technology.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-07-17
    Description: In this study, the adsorption of Ni(II) and Cu(II) ions from aqueous solutions by powdered Delonix regia pods and leaves was investigated using batch adsorption techniques. The effects of operating conditions such as pH, contact time, adsorbent dosage, metal ion concentration and the presence of sodium ions interfering with the sorption process were investigated. The results obtained showed that equilibrium sorption was attained within 30 min of interaction, and an increase in the initial concentration of the adsorbate, pH and adsorbent dosage led to an increase in the amount of Ni(II) and Cu(II) ions adsorbed. The adsorption process followed the pseudo-second-order kinetic model for all metal ions' sorption. The equilibrium data fitted well with both the Langmuir and Freundlich isotherms; the monolayer adsorption capacity (Q0 mg g−1) of the Delonix regia pods and leaves was 5.88 and 5.77 mg g−1 for Ni(II) ions respectively and 9.12 and 9.01 mg g−1 for Cu(II) ions respectively. The efficiency of the powdered pods and leaves of Delonix regia with respect to the removal of Ni(II) and Cu(II) ions was greater than 80 %, except for the sorption of Ni(II) ions onto the leaves. The desorption study revealed that the percentage of metal ions recovered from the pods was higher than that recovered from the leaves at various nitric acid concentrations. This study proves that Delonix regia biomass, an agricultural waste product (“agro-waste”), could be used to remove Ni(II) and Cu(II) ions from aqueous solution.
    Print ISSN: 1996-9457
    Electronic ISSN: 1996-9465
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of Delft University of Technology.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-27
    Description: The primary goal of a drinking water company is to produce safe drinking water fulfilling the quality standards defined by national and international guidelines. To ensure the produced drinking water meets the quality standards, the sampling of the drinking water is carried out on a regular (almost daily) basis. It is a dilemma that the operator wishes to have a high probability of detecting a bias while minimizing their measuring effort. In this paper a seven-step design methodology is described which helps to determine a water quality (WQ) monitoring scheme. Besides using soft sensors as surrogate sensors for parameters currently not available online, they can possibly provide a cost-effective alternative when used to determine multiple parameters required through one single instrument.
    Print ISSN: 1996-9457
    Electronic ISSN: 1996-9465
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of Delft University of Technology.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-11-05
    Description: Many rural farming areas are located far from a reliable electricity supply; hence, obtaining a reliable source of water for crops and livestock can prove to be an expensive venture. A water pump operating on the water-hammer effect requires no external power source and can serve as an effective means of pumping water to a higher altitude once a reliable supply is available. A low-cost small water-hammer head pump was designed to operate on the water-hammer head effect created by the sudden stoppage of a flowing fluid. This design consisted of an inlet section followed by the pump body, a pressure section and an outlet. The experimental set-up for testing the water-hammer head pump was designed with a variable head input and an adjustable head output. For each test configuration, a total of 10 samples of pump supply water and pump exhausted water were collected. The water samples were collected for 30 s in each case. The results showed a non-linear variation of water flow with respect to pump outlet height. The pump was capable of delivering water to a maximum height of 8 to 10 times the height of the input head. The pump operated at average efficiencies of 26 %, 16 % and 6 % when the delivery height was 2, 4 and 6 times the input head height, respectively. There was a 5 % incremental decrease in pump efficiency as the delivery height increased in increments of the corresponding input head height.
    Print ISSN: 1996-9457
    Electronic ISSN: 1996-9465
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of Delft University of Technology.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...