ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4,588)
Collection
  • Articles  (4,588)
Years
Journal
Topic
  • 1
    Publication Date: 2020-05-27
    Description: Appropriate input selection for the estimation matrix is essential when modeling non-linear progression. In this study, the feasibility of the Gamma test (GT) was investigated to extract the optimal input combination as the primary modeling step for estimating monthly pan evaporation (EPm). A new artificial intelligent (AI) model called the co-active neuro-fuzzy inference system (CANFIS) was developed for monthly EPm estimation at Pantnagar station (located in Uttarakhand State) and Nagina station (located in Uttar Pradesh State), India. The proposed AI model was trained and tested using different percentages of data points in scenarios one to four. The estimates yielded by the CANFIS model were validated against several well-established predictive AI (multilayer perceptron neural network (MLPNN) and multiple linear regression (MLR)) and empirical (Penman model (PM)) models. Multiple statistical metrics (normalized root mean square error (NRMSE), Nash–Sutcliffe efficiency (NSE), Pearson correlation coefficient (PCC), Willmott index (WI), and relative error (RE)) and graphical interpretation (time variation plot, scatter plot, relative error plot, and Taylor diagram) were performed for the modeling evaluation. The results of appraisal showed that the CANFIS-1 model with six input variables provided better NRMSE (0.1364, 0.0904, 0.0947, and 0.0898), NSE (0.9439, 0.9736, 0.9703, and 0.9799), PCC (0.9790, 0.9872, 0.9877, and 0.9922), and WI (0.9860, 0.9934, 0.9927, and 0.9949) values for Pantnagar station, and NRMSE (0.1543, 0.1719, 0.2067, and 0.1356), NSE (0.9150, 0.8962, 0.8382, and 0.9453), PCC (0.9643, 0.9649, 0.9473, and 0.9762), and WI (0.9794, 0.9761, 0.9632, and 0.9853) values for Nagina stations in all applied modeling scenarios for estimating the monthly EPm. This study also confirmed the supremacy of the proposed integrated GT-CANFIS model under four different scenarios in estimating monthly EPm. The results of the current application demonstrated a reliable modeling methodology for water resource management and sustainability.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-26
    Description: Leaching of nitrogen from the soil is a natural but unfavorable effect that generates N2O emissions. Exact quantification of nitrogen leakage is a challenging process. Intensive leakage occurs mainly when the soil is without vegetation and under specific climatic conditions. This paper aims to quantify the amount of nitrogen leakage from arable land and grassland, and to estimate N2O emissions in 2017. Estimating the country-specific fraction of leached nitrogen (FracLEACH) is important for the emission balance from this source. Emissions are underestimated when the fraction is low; on the contrary, a high fraction causes overestimation. The internationally recognized fraction is 30%, according to the 2006 Intergovernmental Panel on Climate Control (IPCC) Guidelines. This factor represents the fraction of nitrogen losses compared to total nitrogen inputs and sources. In this study, we analyzed the effects of climatic conditions on agricultural soils in Slovakia to evaluate the area of nitrogen loss through leaching.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-05-26
    Description: To understand soil erosion processes, it is vital to know how the weather types and atmospheric situations, and their distribution throughout the year, affect the soil erosion rates. This will allow for the development of efficient land management practices to mitigate water-induced soil losses. Vineyards are one of the cultivated areas susceptible to high soil erosion rates. However, there is a lack of studies that link weather types and atmospheric conditions to soil erosion responses in viticultural areas. Thus, the main aim of this research is to assess the impacts of weather types and atmospheric conditions on soil erosion processes in a conventional vineyard with tillage in eastern Spain. To achieve this goal, rainfall events from 2006 to 2017 were monitored and the associated runoff and soil loss were collected from experimental plots. Our results showed that the highest volume of runoff and soil erosion is linked to rainfall associated with the eastern winds that accounted for 59.7% of runoff and 63.9% of soil loss, while cold drops in the atmospheric situation classifications emerged as the highest contributor of 40.9% in runoff and 44.1% in soil loss. This paper provides new insights into the development of soil erosion control measures that help to mitigate the negative impact of extreme rainfall and runoff considering atmospheric conditions.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-05-26
    Description: The thermal environment map in street canyon is derived by using GIS building data and more detailed calculation, and its effectiveness is considered for implementing extreme high temperature measures. The influence of mean radiant temperature (MRT) is more dominant than the wind velocity on the distribution of standard new effective temperature (SET*) on the typical summer day in street canyon in the urban area of Kobe city, and the solar radiation shading is more effective in suppressing the rise of SET* in the daytime than improving the land coverage. The following strategy of extreme high temperature measures is derived by considering the thermal environment map in street canyon. Pedestrians may find the shaded places on the north-south road until 10:00 a.m. and after 3:00 p.m., due to the eastern building’s shade in the morning and the western building’s shade in the afternoon.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-05-25
    Description: We measured a wide range of hazardous air pollutants (HAPs) simultaneously at five sites over four seasons in 2009–2010 in Ulsan, the largest industrial city in Korea. Target analytes included volatile organic compounds (VOCs), carbonyls, polycyclic aromatic hydrocarbons (PAHs), phthalates, and heavy metals (HMs). The objectives of this study were to evaluate the occurrence and spatiotemporal distributions of HAPs, and to identify important HAPs based on health risk assessment. Industrial emissions affected ambient levels of VOCs and HMs, as demonstrated by spatial distribution analysis. However, concentrations of PAHs and phthalates were relatively uniform at all sites. VOCs and HMs exhibited little seasonal variation, while formaldehyde increased in the summer due to its secondary formation. PAHs exhibited notable seasonal variation; higher in cold seasons and lower in warm seasons. Cumulative cancer risks imposed by 35 HAPs were 4.7 × 10−4 and 1.7 × 10−4 in industrial and residential areas, respectively. The top five major cancer risk drivers appeared to be formaldehyde, benzene, benzo[a]pyrene, As, and Co. The sums of hazard quotients (HQ) derived by 47 HAPs were 10.0 (industrial) and 2.4 (residential). As the individual species, only two HAPs exceeded the HQ of 1, which are As (3.1) and Pb (2.1) in the industrial area. This study demonstrated the importance of a comprehensive monitoring and health risk assessment to prioritize potentially toxic pollutants in the ambient air of a large industrial city.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-05-25
    Description: The 2022 FIFA World Cup brings Qatar great challenges in terms of minimizing the cooling energy consumption and providing thermal comfort for both spectators and players. This paper presents comparisons among the results of thermal and wind environment modelling of a semi-outdoor stadium under three different cooling configurations and a baseline configuration without cooling using the Computational Fluid Dynamics (CFD) tool ANSYS Fluent 18.2. The three cooling configurations are: (1) vertical jets only above upper tiers, (2) vertical jets above upper tiers and horizontal jets at the back of lower tiers and around the pitch, (3) integrated vertical jets above upper tiers, horizontal jets at the back of lower tiers and air curtains at gates. De-coupled solar radiation simulations are implemented using the solar irradiance data in Doha under fair weather conditions method in Fluent in order to capture realistic thermal boundary conditions for the ground, stadium and surrounding buildings. On the basis of the set conditions, the results show that air curtains, employed in configuration 3 are effective in preventing the penetration of hot outside air through the gates of the stadium, which is an existing issue for stadiums in hot climates, and also contribute to lower energy consumption per match than the other configurations of cooling jets. The results presented in this study are useful not only for future design and retrofits of stadiums in hot climates but also for stadiums that incorporate mechanical cooling.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-05-25
    Description: Narrow Bipolar Pulses are generated by bursts of electrical activity in the cloud and these are referred to as Compact Intracloud Discharges (CID) or Narrow Bipolar Events in the current literature. These discharges usually occur in isolation without much electrical activity before or after the event, but sometimes they are observed to initiate lightning flashes. In this paper, we have studied the features of CIDs assuming that they consist of streamer bursts without any conducting channels. A typical CID may contain about 109 streamer heads during the time of its maximum growth. A CID consists of a current front of several nanosecond duration that travels forward with the speed of the streamers. The amplitude of this current front increases initially during the streamer growth and decays subsequently as the streamer burst continues to propagate. Depending on the conductivity of the streamer channels, there could be a low-level current flow behind this current front which transports negative charge towards the streamer origin. The features of the current associated with the CID are very different from those of the radiation field that it generates. The duration of the radiation field of a CID is about 10–20 s, whereas the duration of the propagating current pulse associated with the CID is no more than a few nanoseconds in duration. The peak current of a CID is the result of a multitude of small currents associated with a large number of streamers and, if all the forward moving streamer heads are located on a single horizontal plane, the cumulative current that radiates at its peak value could be about 108 A. On the other hand, the current associated with an individual streamer is no more than a few hundreds of mA. However, if the location of the forward moving streamer heads are spread in a vertical direction, the peak current can be reduced considerably. Moreover, this large current is spread over an area of several tens to several hundreds of square meters. The study shows that the streamer model of the CID could explain the fine structure of the radiation fields present both in the electric field and electric field time derivative.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-05-25
    Description: Volcanic plumes can be transported across vast distances and can have an impact on solar ultraviolet radiation (UVR) reaching the surface due to the scattering and absorption caused by aerosols. The dispersion of the volcanic plume from the Puyehue-Cordón Caulle volcanic complex (PCCVC) eruption was investigated to determine the effect on aerosol loading at Cape Point, South Africa. The eruption occurred on 4 June 2011 and resulted in a plume reaching a height of between 9 and 12 km and was dispersed across the Southern Hemisphere. Satellite sulphur dioxide (SO2) observations and a dispersion model showed low concentrations of SO2 at the secondary site. However, satellite observations of volcanic ash and ground-based aerosol measurements did show increases between 10 and 20 June 2011 at the secondary site. Furthermore, there was good agreement with the dispersion model results and observations from satellites with most of the plume located between latitudes 40°–60° South.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-05-24
    Description: The mitigation of Greenhouse Gas Emissions can be approached in various ways: from the supply side, by using improvements in technologies and input uses; and from the changes in the demand for products, by influencing consumer behavior to achieve a more sustainable consumption pattern. Either way it can be approached using multi-sectoral data based on an input–output or on a Social Accounting Matrix (SAM) framework, although a suitable database and the proposal of appropriate indicators are needed. A suitable database is developed through the estimation of new SAMs for the latest possible period, that of year 2015. This paper focuses on the demand approach: that of changes in the demand for products. It analyzes the different impacts among activities and commodities of a change in domestic household consumption patterns, compares the potential reductions in Greenhouse Gas (GHG) emissions obtained through the reduction of specific demands, and considers the consequent reduction in output and employment. For this purpose, a linear multi-sectoral analysis is employed that focuses on the main EU member states. Despite major differences between countries, the results show that a decrease in emissions through demand-reduction policies exerts greater negative effects on those less polluting sectors with a higher intensity in the labor force, and offers a more suitable option for those highly polluting sectors with a lower concentration of the work factor. Richer countries that are based on service sectors therefore suffer a sharper drop in employment using this kind of policy.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-05-23
    Description: Secondary ice production via rime-splintering is considered to be an important process for rapid glaciation and high ice crystal numbers observed in mixed-phase convective clouds. An open question is how rime-splintering is triggered in the relatively short time between cloud formation and observations of high ice crystal numbers. We use idealised simulations of a deep convective cloud system to investigate the thermodynamic and cloud microphysical evolution of air parcels, in which the model predicts secondary ice formation. The Lagrangian analysis suggests that the “in-situ” formation of rimers either by growth of primary ice or rain freezing does not play a major role in triggering secondary ice formation. Instead, rimers are predominantly imported into air parcels through sedimentation form higher altitudes. While ice nucleating particles (INPs) initiating heterogeneous freezing of cloud droplets at temperatures warmer than − 10 ∘ C have no discernible impact of the occurrence of secondary ice formation, in a scenario with rain freezing secondary ice production is initiated slightly earlier in the cloud evolution and at slightly different places, although with no major impact on the abundance or spatial distribution of secondary ice in the cloud as a whole. These results suggest that for interpreting and analysing observational data and model experiments regarding cloud glaciation and ice formation it is vital to consider the complex vertical coupling of cloud microphysical processes in deep convective clouds via three-dimensional transport and sedimentation.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...