ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,129)
Collection
  • Articles  (1,129)
Years
Journal
Topic
  • 1
    Publication Date: 2021-10-28
    Description: Galaxy groups constitute the most common class of galaxy systems in the known Universe, unique in terms of environmental properties. However, despite recent advances in optical and infrared observations as well as in theoretical research, little is known about magnetic fields and the associated continuum radio emission. Studies on this issue have only been conducted in recent years, and many questions have yet to be resolved. This article aims to put the study of group magnetism in a broader context, to present recent advances in the field (mainly achieved with low-frequency radio interferometers), and to list the issues that need to be addressed in future observations. To make it easier for the Readers to get acquainted with the concepts presented in the manuscript, radio observations of two sample groups of galaxies are also presented.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-28
    Description: Odd Radio Circles (ORCs) are unexpected faint circles of diffuse radio emission discovered in recent wide deep radio surveys. They are typically about one arcmin in diameter, and may be spherical shells of synchrotron emission about a million light years in diameter, surrounding galaxies at a redshift of ∼0.2–0.6. Here we study the properties and environment of the known ORCs. All three known single ORCs either lie in a significant overdensity or have a close companion. If the ORC is caused by an event in the host galaxy, then the fact that they tend to be in an overdensity, or have a close companion, may indicate that the environment is important in creating the ORC phenomenon, possibly because of an increased ambient density or magnetic field.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-27
    Description: Over half a century from the discovery of gamma-ray bursts (GRBs), the dominant radiation mechanism responsible for their bright and highly variable prompt emission remains poorly understood. Spectral information alone has proven insufficient for understanding the composition and main energy dissipation mechanism in GRB jets. High-sensitivity polarimetric observations from upcoming instruments in this decade may help answer such key questions in GRB physics. This article reviews the current status of prompt GRB polarization measurements and provides comprehensive predictions from theoretical models. A concise overview of the fundamental questions in prompt GRB physics is provided. Important developments in gamma-ray polarimetry including a critical overview of different past instruments are presented. Theoretical predictions for different radiation mechanisms and jet structures are confronted with time-integrated and time-resolved measurements. The current status and capabilities of upcoming instruments regarding the prompt emission are presented. The very complimentary information that can be obtained from polarimetry of X-ray flares as well as reverse-shock and early to late forward-shock (afterglow) emissions are highlighted. Finally, promising directions for overcoming the inherent difficulties in obtaining statistically significant prompt-GRB polarization measurements are discussed, along with prospects for improvements in the theoretical modeling, which may lead to significant advances in the field.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-23
    Description: We present the unique and challenging case of a radio galaxy in Abell 3266 observed as part of the MeerKAT Galaxy Cluster Legacy Survey. It has quasi-periodic bright patches along the tail which connect to never-before-seen thin transverse extensions, which we call “ribs”, reaching up to ∼50 kpc from the central axis of the tail. At a distance of ∼400 kpc from the host (assuming the z=0.0594 redshift of Abell 3266) we found what appears to be a triple source with its own apparent host at a photometric redshift of 0.78. Mysteriously, the part of the tail far from the host and the triple are connected by a series of thin filaments, which we call “tethers”. The far tail, tethers and triple also have similar spectra and Faraday rotation measures, suggesting that there is only one—quite complicated—source, with a serendipitous background AGN in the triple. We look at possible causes for the “rib” and “tether” structures, and the emerging phenomena of intracluster medium filaments associated with radio galaxies.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-19
    Description: Microquasar binary stellar systems emit electromagnetic radiation and high-energy particles over a broad energy spectrum. However, they are so far away that it is hard to observe their details. A simulation offers the link between relatively scarce observational data and the rich theoretical background. In this work, high-energy particle emission from simulated twin microquasar jets is calculated in a unified manner. From the cascade of emission within an element of jet matter to the dynamic and radiative whole jet model, the series of physical processes involved are integrated together. A programme suite assembled around model data produces synthetic images and spectra directly comparable to potential observations by contemporary arrays. The model is capable of describing a multitude of system geometries, incorporating increasing levels of realism depending on need and available computational resources. As an application, the modelling process is applied to a typical microquasar, which is synthetically observed from different angles using various imaging geometries. Furthermore, the resulting intensities are comparable to the sensitivity of existing detectors. The combined background emission from a potential distribution of microquasars is also modelled.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-19
    Description: We review the current scenario of long-duration Gamma-ray burst (LGRB) progenitors, and in addition, present models of massive stars for a mass range of 10-150M⊙ with ΔM=10M⊙ and rotation rate v/vcrit=0 to 0.6 with a velocity resolution Δv/vcrit=0.1. We further discuss possible metallicity and rotation rate distribution from our models that might be preferable for the creation of successful LGRB candidates given the observed LGRB rates and their metallicity evolution. In the current understanding, LGRBs are associated with Type-Ic supernovae (SNe). To establish LGRB-SN correlation, we discuss three observational paths: (i) space-time coincidence, (ii) evidence from photometric light curves of LGRB afterglows and SN Type-Ic, (iii) spectroscopic study of both LGRB afterglow and SN. Superluminous SNe are also believed to have the same origin as LGRBs. Therefore, we discuss constraints on the progenitor parameters that can possibly dissociate these two events from a theoretical perspective. We further discuss the scenario of single star versus binary star as a more probable pathway to create LGRBs. Given the limited parameter space in the mass, mass ratio and separation between the two components in a binary, binary channel is less likely to create LGRBs to match the observed LGRB rate. Despite effectively-single massive stars are fewer in number compared to interacting binaries, their chemically homogeneous evolution (CHE) might be the major channel for LGRB production.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-17
    Description: We studied the relation of accretion-jet power and disk luminosity, especially the jet efficiencies and disk radiative efficiencies for different accretion disks as well as black hole (BH) spin, in order to explore the origin of radio emission in black hole X-ray binaries (BHXBs). We found that jet efficiency increases more rapidly (efficient) than the nearly constant disk radiative efficiency for thin disk component in high accretion regime, which could account for the steep track (μ〉1) in the observed radio and X-ray luminosity relations (LR∝LXμ), but the thin disk component may not be able to explain the standard track (μ≈0.6) in the BHXBs. For hot accretion flows (HAF), the resulting jet efficiency changes along with the large range of accretions from quiescent state to nearly Eddington state, which could account for the standard track in the BHXBs. The BH spin-jet is discussed for the magnetic arrested disk (MAD) state; in this state, the spin-jet power might contribute to a linear correlation between jet power and mass accretion rate for a given source. More accurate observations are required to test the results.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-07
    Description: We perform an analysis of the properties of radio-loud (RL) and radio-quiet (RQ) quasars with MgII broad emission line (i-band magnitude ≤19.1 and z ≤1.9), selected from the parent sample of SDSS DR7 catalogue. For sources with full-width half maxima (FWHM) greater than 15,000 km s−1 (very broad line sample; VBL) we find the radio loud fraction (RLF) to be about 40%. To further investigate this result we compare the bolometric luminosity, optical continuum luminosity, black hole (BH) mass and Eddington ratios of our VBL sample of RL and RQ quasars. Our analysis shows that in our VBL sample space, RL quasars have higher luminosities and BH mass than RQ quasars. The similarity in the distribution of their covering fraction (CF) shows that there is no difference in dust distribution between VBL RL and RQ quasars and hence dust is not affecting our results. We also find that there is no correlation of RL quasar properties with optical continuum luminosity and BH mass.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-22
    Description: I outline the history of and progress in observing and understanding quasar multi-frequency and multi-messenger variability from the point of view of someone who has been working in the field for over 30 years. I will present some important references for the evolution from optical monitoring to multi-frequency cooperative programs that revealed the true multi-frequency/multi-timescale nature of variability in these objects. Quasar observations began with separate radio and optical monitoring programs; then the optical and radio observations w ere combined. This was followed by expanding the analyses to include far IR, UV, X-rays, and finally adding gamma rays. This progression yielded simultaneous multi-frequency spectra of these objects and light curves over 15 decades in frequency. The future is adding particle (neutrino) and gravitational waves to the picture. I also present long-term (50 years) optical light curves, and discuss optical variability at all timescales from minutes to tens of years in some selected objects for which we have reliable long-term monitoring observations.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-09-15
    Description: The prompt emission of most gamma-ray bursts (GRBs) typically exhibits a non-thermal Band component. The synchrotron radiation in the popular internal shock model is generally put forward to explain such a non-thermal component. However, the low-energy photon index α∼−1.5 predicted by the synchrotron radiation is inconsistent with the observed value α∼−1. Here, we investigate the evolution of a magnetic field during propagation of internal shocks within an ultrarelativistic outflow, and revisit the fast cooling of shock-accelerated electrons via synchrotron radiation for this evolutional magnetic field. We find that the magnetic field is first nearly constant and then decays as B′∝t−1, which leads to a reasonable range of the low-energy photon index, −3/2
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...