ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2012-06-30
    Description: ABSTRACT Holocene rockwall retreat rates quantify integral values of rock slope erosion and talus cone evolution. Here we investigate Holocene rockwall retreat of exposed arctic sandstone cliffs in Longyeardalen, central Svalbard and apply laboratory-calibrated electrical resistivity tomography (ERT) to determine talus sediment thickness. Temperature-resistivity functions of two sandstone samples are measured in the laboratory and compared with borehole temperatures from the talus slope. The resistivity of the higher and lower-porosity sandstone at relevant borehole permafrost temperatures defines a threshold range that accounts for the lithological variability of the dominant bedrock and debris material. This helps to estimate the depth of the transition from higher resistivities of ice-rich debris to lower resistivities of frozen bedrock in the six ERT transects. The depth of the debris-bedrock transition in ERT profiles is confirmed by a pronounced apparent resistivity gradient in the raw data plotted versus depth of investigation. High-resolution LiDAR-scanning and ERT subsurface information were collated in a GIS to interpolate the bedrock surface and to calculate the sediment volume of the talus cones. The resulting volumes were referenced to source areas to calculate rockwall retreat rates. The rock mass strength was estimated for the source areas. The integral rockwall retreat rates range from 0.33 to 1.96 mm/yr, and are among the highest rockwall retreat rates measured in arctic environments, presumably modulated by harsh environmental forcing on a porous sandstone rock cliff with a comparatively low rock mass strength. Here, we show the potential of laboratory-calibrated ERT to provide accurate estimates of rockwall retreat rates even in ice-rich permafrost talus slopes. Copyright © 2012 John Wiley & Sons, Ltd.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-25
    Description: Decomposition of soil organic matter (SOM) in permafrost terrain and the production of greenhouse gases is a key factor for understanding climate change-carbon feedbacks. Previous studies have shown that SOM decomposition is mostly controlled by soil temperature, soil moisture and carbon-nitrogen ratio (C:N). However, focus has generally been on site-specific processes and little is known about variations in the controls on SOM decomposition across Arctic sites. For assessing SOM decomposition, we retrieved 241 samples from 101 soil profiles across three contrasting Arctic regions, and incubated them in the laboratory under aerobic conditions. We assessed soil carbon losses (C loss ) five times during an one-year incubation. The incubated material consisted of near-surface active layer (AL NS ), subsurface active layer (AL SS ), peat and permafrost samples. Samples were analysed for carbon, nitrogen, water content, δ 13 C, δ 15 N and dry bulk density (DBD). While no significant differences were observed between total AL SS and permafrost C loss over one year incubation (2.3 ± 2.4 % and 2.5 ± 1.5 % C loss , respectively), AL NS samples showed higher C loss (7.9 ± 4.2 %). DBD was the best explanatory parameter for active layer C loss across sites. Additionally, results of permafrost samples show that C:N ratio can be used to characterise initial C loss between sites. This dataset on the influence of abiotic parameter on microbial SOM decomposition can improve model simulations of Arctic soil CO 2 production by providing representative mean values of CO 2 production rates as well as identifying standard parameters or proxies for upscaling potential CO 2 production from site to regional scales.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...