ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2019
    Beschreibung: Most weather and climate models simulate circulations by numerically approximating a complex system of partial differential equations that describe fluid flow. These models also typically use one of a few standard methods to parameterize the effects of smaller-scale circulations such as convective plumes. This paper discusses the continued development of a radically different modeling approach. Rather than solving partial differential equations, the author’s Lagrangian models predict the motions of individual fluid parcels using ordinary differential equations. They also use a unique convective parameterization, in which the vertical positions of fluid parcels are rearranged to remove convective instability. Previously, a global atmospheric model and basin-scale ocean models were developed with this approach. In the present study, components of these models are combined to create a new global Lagrangian ocean model (GLOM), which will soon be coupled to a Lagrangian atmospheric model. The first simulations conducted with the GLOM examine the contribution of interior tracer mixing to ocean circulation, stratification, and water mass distributions, and they highlight several special model capabilities: (1) simulating ocean circulations without numerical diffusion of tracers; (2) modeling deep convective transports at low resolution; and (3) identifying the formation location of ocean water masses and water pathways.
    Digitale ISSN: 2225-1154
    Thema: Energietechnik , Geologie und Paläontologie
    Publiziert von MDPI
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2014-09-23
    Beschreibung: Analyses of Lagrangian model simulations and atmospheric sonde data reveal a key component of the Madden Julian Oscillation (MJO): circumnavigating equatorial Kelvin waves with dynamics that transform between dry and moist, which initiate and dissipate MJO convection. The same compositing procedure is applied to simulated and observed MJOs, which uses a coordinate system that moves with the precipitation center, and treats developing, mature, and dissipating stages separately. MJO structure and evolution are similar in the simulation and the observations. To the west of the developing convection, there is a broad region of low-level (upper-level) perturbation westerlies (easterlies), which is accompanied by a deep negative temperature perturbation. As this feature enters the MJO-formation region, convection intensifies on its eastern edge, and the zonal wind perturbations decrease in zonal extent and propagation speed. This process is shown to be a dynamical consequence of a largely dry, fi rst baroclinic Kelvin wave entering a region where large-scale upward motion is mostly balanced by convective heating. As the MJO matures, a Kelvin wave of opposite sign emerges from its eastern edge, and makes the opposite transition (from moist to dry). The resulting wave, which includes low-level (upper-level) easterlies (westerlies) and a deep positive temperature perturbation, rapidly propagates around the world and dissipates MJO convection. The Kelvin wave that initiates MJO convection is shown to originate from the inactive phase of a previous MJO, so that the complete MJO cycle is characterized by the two kinds of Kelvin waves emerging from active and suppressed phases of MJO convection, circumnavigating the tropics, and triggering the opposite phase.
    Print ISSN: 0035-9009
    Digitale ISSN: 1477-870X
    Thema: Geographie , Physik
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2018
    Beschreibung: The Madden Julian Oscillation (MJO) is the largest contributor to intraseasonal weather variations in the tropics. It is associated with a broad region of enhanced rainfall that moves slowly eastward over the Indian and western Pacific Oceans, which has global impacts on atmospheric circulations. A number of recent observational and modeling studies have suggested that the MJO is becoming stronger as the oceans warm. In this study, the author explores the sensitivity of the MJO to ocean warming in a recently developed Lagrangian Atmospheric Model (LAM), which has been shown to simulate robust and realistic MJOs in previous work. Numerical simulations suggest that ocean warming leads to more frequent and intense MJOs that propagate more rapidly and cover a larger region of the tropics. The strengthening of the MJO is attributed to enhanced surface fluxes of moisture coming from the warmer ocean waters. While the LAM simulations have a number of limitations owing to idealized physical parameterizations and the use of prescribed sea surface temperatures, they provide additional evidence that the MJO will strengthen if the oceans continue to warm, and they also shed light on the mechanism of this strengthening.
    Digitale ISSN: 2225-1154
    Thema: Energietechnik , Geologie und Paläontologie
    Publiziert von MDPI
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2018-05-29
    Beschreibung: Climate, Vol. 6, Pages 45: Sensitivity of the Madden Julian Oscillation to Ocean Warming in a Lagrangian Atmospheric Model Climate doi: 10.3390/cli6020045 Authors: Patrick Haertel The Madden Julian Oscillation (MJO) is the largest contributor to intraseasonal weather variations in the tropics. It is associated with a broad region of enhanced rainfall that moves slowly eastward over the Indian and western Pacific Oceans, which has global impacts on atmospheric circulations. A number of recent observational and modeling studies have suggested that the MJO is becoming stronger as the oceans warm. In this study, the author explores the sensitivity of the MJO to ocean warming in a recently developed Lagrangian Atmospheric Model (LAM), which has been shown to simulate robust and realistic MJOs in previous work. Numerical simulations suggest that ocean warming leads to more frequent and intense MJOs that propagate more rapidly and cover a larger region of the tropics. The strengthening of the MJO is attributed to enhanced surface fluxes of moisture coming from the warmer ocean waters. While the LAM simulations have a number of limitations owing to idealized physical parameterizations and the use of prescribed sea surface temperatures, they provide additional evidence that the MJO will strengthen if the oceans continue to warm, and they also shed light on the mechanism of this strengthening.
    Digitale ISSN: 2225-1154
    Thema: Energietechnik , Geologie und Paläontologie
    Publiziert von MDPI
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2017-08-27
    Beschreibung: Atmosphere, Vol. 8, Pages 158: Origins of Moist Air in Global Lagrangian Simulations of the Madden–Julian Oscillation Atmosphere doi: 10.3390/atmos8090158 Authors: Patrick Haertel William Boos Katherine Straub Many recent studies have characterized the Madden–Julian Oscillation (MJO) as a moisture mode, suggesting that its amplification and eastward propagation result from processes that build up moisture to the east of the MJO’s convective center, including frictionally driven boundary layer convergence, surface fluxes, and shallow convection. Discussions of MJO moistening under this theory often implicitly assume an Eulerian framework; i.e., that local increases in moisture result from physical processes acting in the same location as the moistening is observed. In this study, the authors examine MJO moistening in a Lagrangian framework using a model that simulates atmospheric circulations by predicting the motions of individual air parcels. Back trajectories are presented for parcels in moist convecting regions of the MJO, and the effects of different physical processes on their moisture and moist static energy budgets are quantified. The Lagrangian MJO simulations suggest that much of the low-level moist air in heavily precipitating regions of the MJO arrives via the mid troposphere, coming from nearby equatorial regions, where it has been moistened largely by convective processes. Consequently, a thorough understanding of MJO moistening requires knowledge of the origin of the moist air and information about remote moisture sources.
    Digitale ISSN: 2073-4433
    Thema: Geologie und Paläontologie
    Publiziert von MDPI Publishing
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2017-07-13
    Beschreibung: Previous research has revealed that monsoon lows and depressions are modulated on intraseasonal time scales in a few regions, including India, Australia, and the East Pacific. This study examines whether such modulation occurs on a global scale and, in particular, how the Madden Julian Oscillation (MJO) is associated with changes in synoptic-scale vortices across all monsoon regions. The spatial climatology of monsoon disturbances is largely insensitive to MJO amplitude. However, monsoon disturbance frequency (MDF) varies substantially with MJO phase, with regional perturbations of 25 to 90 percent of the seasonal mean value across the tropics. In off-equatorial locations, MDF maxima occur in locations where the MJO enhances low-level cyclonic vorticity, typically near the western edge of mid-level moisture perturbations. In contrast, equatorial MDF perturbations are in phase with MJO moisture and rainfall anomalies, with maxima in regions with strong low-level zonal wind convergence.
    Print ISSN: 0094-8276
    Digitale ISSN: 1944-8007
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2013-06-22
    Beschreibung: The Madden Julian Oscillation (MJO), a planetary scale disturbance in zonal winds and equatorial convection that dominates intraseasonal variability in the tropics, is a challenge to explain and notoriously difficult to simulate with conventional climate models. This study discusses numerical experiments conducted with a novel Lagrangian atmospheric model (LAM) that produce surprisingly robust and realistic MJOs, even at very low resolution. The LAM represents an atmosphere as a collection of conforming air parcels whose motions are predicted using Newtonian mechanics. The model employs a unique convective parameterization, referred to as Lagrangian overturning (LO), in which air parcels exchange vertical positions in convectively unstable regions. A key model parameter for simulating MJOs is the mixing between adjacent ascending and descending parcels, with more frequent and stronger MJOs occurring when greater mixing is prescribed. Sensitivity tests suggest that MJOs simulated with the LAM are not particularly sensitive to model resolution, but their structure and propagation speed do depend on sea surface temperatures, large scale precipitation patterns, and surface fluxes. An important conclusion of this paper is that the most fundamental dynamics of the MJO are captured by the LO convective parameterization coupled with large scale atmospheric circulations.
    Print ISSN: 0035-9009
    Digitale ISSN: 1477-870X
    Thema: Geographie , Physik
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...