ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
1
Monograph available for loan
Monograph available for loan
Cambridge [u.a.] : Cambridge Univ. Press
Call number: MOP 47753
In: Cambridge atmospheric and space science series
Type of Medium: Monograph available for loan
Pages: XIV, 457 S. , graph. Darst.
ISBN: 0521382157
Series Statement: Cambridge atmospheric and space science series 2
Location: MOP - must be ordered
Branch Library: GFZ Library
Location Call Number Expected Availability
BibTip Others were also interested in ...
Associated Volumes
  • 2
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Call number: PIK N 456-97-0339
    In: Cambridge atmospheric and space science series
    Type of Medium: Monograph available for loan
    Pages: 422 p.
    Edition: 1. ed.
    ISBN: 0521429358
    Series Statement: Cambridge atmospheric and space science series
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Cambridge [u.a.] : Univ. Press
    Call number: PIK N 456-93-0053 ; AWI A7-92-0493 ; MOP 47817
    In: Cambridge atmospheric and space science series
    Type of Medium: Monograph available for loan
    Pages: XVIII, 316 S. ; Abb. ; 24 cm
    ISBN: 0521380529
    Series Statement: Cambridge atmospheric and space science series
    Location: AWI Reading room
    Location: MOP - must be ordered
    Branch Library: PIK Library
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    Cambridge [u.a.] : Cambridge Univ. Press
    Call number: AWI S2-95-0118
    In: Cambridge atmospheric and space science series
    Description / Table of Contents: Contents: Preface. - Partial list of symbols. - 1 Introduction. - 2 Function fitting. - 3 The method of successive corrections. - 4 Statistical interpolation: univariate. - 5 Statistical interpolation: multivariate. - 6 The initialization problem. - 7 Quasi-geostrophic constraints. - 8 Variational procedures. - 9 Normal mode initialization: theory. - 10 Normal mode initialization: applications. - 11 Dynamic initialization. - 12 Continuous data assimilation. - 13 Future directions. - Appendices. - References. - Index
    Type of Medium: Monograph available for loan
    Pages: XIV, 457 S. : graph. Darst.
    Edition: 1. paperback ed.
    ISBN: 0521458250
    Series Statement: Cambridge atmospheric and space science series 2
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Cambridge [u.a.] : Cambridge Univ. Press
    Call number: AWI A3-95-0119
    In: Cambridge atmospheric and space science series
    Type of Medium: Monograph available for loan
    Pages: XIII, 377 S.
    Edition: 1. publ.
    ISBN: 0521444454
    Series Statement: Cambridge atmospheric and space science series [11]
    Language: English
    Note: Contents: Preface. - 1 Preliminary information. - 1.1 Definition of the climatic system. - 1.2 Scales of temporal variability and its mechanisms. - 1.3 Predictability and non-uniqueness. - 1.4 Methods of experimental research. - 1.4.1 Ground-based measurements. - 1.4.2 Satellite measurements. - 2 Present state of the climatic system. - 2.1 Initial information. - 2.2 Mass budget. - 2.3 Heat budget. - 2.4 Moisture budget. - 2.5 Energy budget. - 2.6 Angular momentum budget. - 2.7 Carbon budget. - 3 Small-scale ocean-atmosphere interaction. - 3.1 Surface atmospheric layer. - 3.2 Vertical distribution of the mean velocity over an immovable smooth surface: viscous sublayer; logarithmic boundary layer. - 3.3 Vertical distribution of the mean velocity over an immovable rough surface: roughness parameter; hydrodynamic classification of underlying surfaces. - 3.4 Hydrodynamic properties of the sea surface. - 3.5 Wind-wave interaction. - 3.6 Vertical distribution of the temperature and passive admixture over an immovable surface. - 3.7 Coefficients of resistance, heat exchange and evaporation for the sea surface. - 3.8 The Monin-Obukhov similarity theory. - 3.9 Transformation of the thermal regime of the surface atmospheric layer in the presence of wind-wave interaction. - 3.10 Methods for estimating surface fluxes of momentum heat and humidity. - 3.11 Methods for estimating C02 flux at the ocean-atmosphere interface. - 3.12 Features of small-scale ocean- atmosphere interaction under storm conditions. - 4 Mesoscale ocean-atmosphere interaction. - 4.1 The planetary boundary layer. - 4.2 Problem of closure. - 4.2.1 First-order closure. - 4.2.2 Second-order closure. - 4.3 Laws of resistance and heat and humidity exchange. - 4.4 System of planetary boundary layers of the ocean and atmosphere. - 4.4.1 Theoretical models using a priori information on the magnitude and profile of the eddy viscosity coefficient. - 4.4.2 Simplest closed models. - 4.4.3 Semiempirical models not using a priori information on the magnitude and profile of the eddy viscosity coefficient. - 5 Large-scale ocean-atmosphere interaction. - 5.1 Classification of climatic system models. - 5.2 Similarity theory for global ocean-atmosphere interaction. - 5.3 Zero-dimensional models. - 5.4 One-dimensional models. - 5.5 0.5-dimensional (box) models. - 5.6 1.5-dimensional models. - 5.7 Two-dimensional (zonal) models. - 5.8 Three-dimensional models. - 5.9 ENSO as a manifestation of the inter-annual variability of the ocean-atmosphere system. - 6 Response of the ocean-atmosphere system to external forcing. - 6.1 Sensitivity of the climatic system: mathematical methods of analysis. - 6.2 Equilibrium response to a change in ocean-land area ratio. - 6.3 Equilibrium response to a change in the concentration of atmospheric CO2. - 6.4 Equilibrium response to a change in land surface albedo. - 6.5 Equilibrium response to a change in soil moisture content. - 6.6 Equilibrium response to a change in vegetative cover. - 6.7 Transient response to a change in the concentration of atmospheric CO2. - References. - Index. , Aus d. Russ. übers.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Cambridge [u.a.] : Cambridge Univ. Press
    Call number: 13/M 06.0016 ; AWI A4-06-0013
    In: Cambridge atmospheric and space science series
    Type of Medium: Monograph available for loan
    Pages: XVII, 385 S. , graph. Darst., Kt.
    ISBN: 0521814189
    Series Statement: Cambridge atmospheric and space science series
    Classification: D.4.
    Note: Contents: Preface. - Acknowledgements. - List of Abbreviations. - 1 The evolution of knowledge about the Arctic and its climate. - 1.1 Historical exploration. - 1.2 The beginning of systematic observations. - 1.3 The modern era. - 2 Physical characteristics and basic climatic features. - 2.1 The Arctic ocean. - 2.2 The Arctic lands. - 2.3 Basic climatic elements. - 3 The basic atmospheric heat budget. - 3.1 The Arctic and the global heat budget. - 3.2 The basic Arctic heat budget. - 3.3 Further analysis of Fwall. - 4 The atmospheric circulation. - 4.1 Historical perspective. - 4.2 The stratospheric circulation. - 4.3 The Arctic tropopause. - 4.4 The mid-tropospheric circulation. - 4.5 Surface and near-surface circulation. - 4.6 Polar Lows. - 5 The surface energy budget. - 5.1 The energy balance equations. - 5.2 The downward solar radiation flux. - 5.3 Surface albedo. - 5.4 Longwave radiation fluxes. - 5.5 Distribution of net radiation. - 5.6 Cloud radiative forcing. - 5.7 Radiation fluxes from surface observations: examples from SHEBA. - 5.8 Partitioning of net radiation. - 5.9 Skin temperature, SAT and vertical structure. - 5.10 Radiation-climate feedbacks. - 6 Precipitation, net precipitation and river discharge. - 6.1 Precipitation. - 6.2 Evapo-transpiration and net precipitation. - 6.3 Mean annual cycles for the major terrestrial drainages. - 6.4 River discharge and runoff. - 7 Arctic ocean-sea ice-climate interactions. - 7.1 Sea ice formation, growth and melt. - 7.2 Mean circulation, ice zones and concentration. - 7.3 Sea ice motion. - 7.4 Examples of large-scale ocean-sea ice-climate interactions. - 7.5 The Fram Strait outflow and the thermohaline circulation. - 8 Climate regimes of the Arctic. - 8.1 The Greenland Ice Sheet. - 8.2 Polar desert. - 8.3 Maritime Arctic. - 8.4 Central Arctic Ocean. - 8.5 Mountains and uplands. - 8.6 Urban modifications of local climate. - 9 Modeling the Arctic climate system. - 9.1 General model types. - 9.2 Single-column models. - 9.3 Land surface models. - 9.4 Sea ice and ice-ocean models. - 9.5 Global climate models. - 9.6 Regional climate models. - 9.7 Numerical weather prediction models. - 9.8 Ecosystem models. - 9.9 Summary of model errors. - 10 Arctic paleoclimates. - 10.1 The distant past. - 10.2 Paleoclimate records for the Quaternary. - 10.3 Features of the Quaternary. - 10.4 Rapid climate shifts. - 10.5 Regional aspects of the LGM. - 10.6 Deglaciation. - 10.7 The Holocene. - 11 Recent climate variability, trends and the future. - 11.1 Setting the stage. - 11.2 Summary of observed variability and change. - 11.3 The NAO and AO. - 11.4 The NAO/AO framework: merits and shortcomings. - 11.5 Related multiyear climate variability. - 11.6 The future. - References. - List of selected websites. - Index.
    Location: Reading room
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge Univ. Press
    Call number: PIK N 456-08-0224
    In: Cambridge atmospheric and space science series
    Type of Medium: Monograph available for loan
    Pages: XXI, 422 S. : graph. Darst.
    Edition: 1st paperback ed.
    ISBN: 0521429358
    Series Statement: Cambridge atmospheric and space science series
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Cambridge [u.a.] : Cambridge Univ. Press
    Call number: AWI A4-97-0466
    In: Cambridge atmospheric and space science series
    Description / Table of Contents: This book presents a comprehensive survey of the climatology and meteorology of Antarctica. As well as describing the climate which prevails in the Antarctic, the book also considers the processes by which this climate is maintained and explores links between the Antarctic and the global climate system. The first section of the book reviews the methods by which we can observe the Antarctic atmosphere and presents a synthesis of climatological measurements. In the second section, the processes whcih maintain the observed climate are considered, starting with large-scale weather systems to mesoscale and small-scale processes. The final section reviews our current knowledge of the variability of the Antarctic climate and considers changes that may occur in Antarctica as a result of 'greenhouse' warming. Throughout the book, the links between the Antarctic atmosphere and other elements of the Antarctic climate system (oceans, sea ice and ice sheets) are stressed and the processes which couple the Antarctic with the global climate system are examined. The instruments and platforms used in Antarctic climate studies are discussed (including automatic stations and international data centres), with special emphasis on the role of remote sensing from satellites and numerical modelling techniques. This volume will be of greatest interest to meteorologists and climatologists with a specialised interest in Antarctica and the Southern Ocean, but it will also appeal to researchers in Antarctic glaciology, oceanography and biology. Graduates and undergraduates studying physical geography or the earth, atmospheric and environmental sciences will find much useful background material in the book.
    Type of Medium: Monograph available for loan
    Pages: XI, 409 S. : Ill., graph. Darst., Kt.
    ISBN: 0521465605
    Series Statement: Cambridge atmospheric and space science series
    Note: Contents: Preface. - 1 Introduction. - 1.1 Physical characteristics of the Antarctic. - 1.2 A brief history of Antarctic meteorology. - 1.3 The role of the Antarctic atmosphere in the global climate system. - 2 Observations and instrumentation. - 2.1 Observing in the Antarctic. - 2.2 Instruments for meteorological measurements. - 2.3 Automatic weather stations. - 2.4 Drifting buoys. - 2.5 Surface-based remote sensing. - 2.6 Satellites, space-based observing systems and ground stations. - 2.7 The station network and communications. - 2.8 Data sets and data centres. - 3 Physical climatology. - 3.1 Radiation. - 3.2 Temperature and humidity. - 3.3 Pressure, geopotential and wind. - 3.4 Clouds and precipitation. - 3.5 Sea ice and the Southern Ocean environment. - 4 The large-scale circulation of the Antarctic atmosphere. - 4.1 Introduction. - 4.2 The heat budget. - 4.3 Atmospheric circulation and the vorticity budget. - 4.4 The water vapour budget. - 4.5 Representation of the Antarctic atmosphere in general circulation models. - 5 Synoptic-scale weather systems and fronts. - 5.1 Introduction. - 5.2 The role of depressions. - 5.3 Depressions in the Antarctic and over the Southern Ocean. - 5.4 Climatology. - 5.5 Preparation of operational analyses and forecasts. - 5.6 Future research needs. - 6 Mesoscale systems and processes. - 6.1 Local wind systems. - 6.2 Internal gravity waves. - 6.3 The atmospheric boundary layer. - 6.4 Blowing snow. - 6.5 Mesocyclones. - 7 Climate variability and change. - 7.1 Variations in the historical climate record. - 7.2 Interactions with the tropical and mid-latitude circulation. - 7.3 Future climate predictions - Antarctica in a 'greenhouse' climate. - Appendix A: A chronological list of stations that have made multi-year meteorological observations in the Antarctic and on the sub-Antarctic islands. - Appendix B: A chronological list of automatic weather stations that have been deployed in the Antarctic and on the sub-Antarctic Islands. - References. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Monograph available for loan
    Monograph available for loan
    Cambridge [u.a.] : Cambridge Univ. Press
    Call number: AWI A10-00-0209
    In: Cambridge atmospheric and space science series
    Description / Table of Contents: Contents: List of Illustrations. - Preface. - Acknowledgments. - 1 Basic Properties of Radiation, Atmospheres, and Oceans. - 1.1 lntroduction. - 1.2 Parts of the Spectrum. - 1.2.1 Extraterrestrial Solar Flux. - 1.2.2 Terrestrial lnfrared Flux. - 1.3 Radiative Interaction with Planetary Media. - 1.3.1 Feedback Processes. - 1.3.2 Types of Matter that Affect Radiation. - 1.4 Vertical Structure of Planetary Atmospheres. - 1.4.1 Hydrostatic and Ideal Gas Laws. - 1.4.2 Minor Species in the Atmosphere. - 1.4.3 Optical Line-of-Sight Paths. - 1.4.4 Radiative Equilibrium and the Thermal Structure of Atmospheres. - 1.4.5 Climate Change: Radiative Forcing and Feedbacks. - 1.5 Density Structure of the Ocean. - 1.6 Vertical Structure of the Ocean. - 1.6.1 The Mixed Layer and the Deep Ocean. - 1 .6.2 Seasonal Variations of Ocean Properties. - 1.6.3 Sea-Surface Temperature. - 1.6.4 Ocean Spectral Reflectance and Opacity. - 1.7 Remarks on Nomenclature, Notation, and Units. - 1.8 Summary. - 2 Basic State Variables and the Radiative Transfer Equation. - 2.1 Introduction.- 2.2 Geometrical Optics. - 2.3 Radiative Flux or Irradiance. - 2.4 Spectral Intensity and Its Angular Moments. - 2.4.1 Relationship between Flux and Intensity. - 2.4.2 Average Intensity and Energy Density. - 2.5 Some Theorems on Intensity. - 2.5.1 lntensity and Flux from an Extended Source. - 2.6 Perception of Brightness: Analogy with Radiance. - 2.7 The Extinction Law. - 2.7.1 Extinction = Scattering + Absorption. - 2.8 The Differential Equation of Radiative Transfer. - 2.9 Summary. - 3 Basic Scattering Processes. - 3.1 Introduction. - 3.2 Lorentz Theory for Radiation- Matter Interactions. - 3.2.1 Scattering and Collective Effects in a Uniform Medium. - 3.2.2 Scattering from Density Irregularities. - 3.2.3 Scattering in Random Media. - 3.2.4 First-Order and Multiple Scattering. - 3.3 Scattering from a Damped Simple Harmonic Oscillator. - 3.3.1 Case ( 1 ): Resonance Scattering and the Lorentz Profile. - 3.3.2 Conservative and Nonconservative Scattering. - 3.3.3 Natural Broadening. - 3.3.4 Pressure Broadening. - 3.3.5 Doppler Broadening. - 3.3.6 Realistic Line-Broadening Processes. - 3.3.7 Case (2): Rayleigh Scattering. - 3.4 The Scattering Phase Function. - 3.4.1 Rayleigh-Scattering Phase Function. - 3.5 Mie-Debye Scattering. - 3.6 Summary. - 4 Absorption by Solid, Aqueous, and Gaseous Media. - 4.1 Introduction. - 4.2 Absorption on Surfaces, on Aerosols, and within Aqueous Media. - 4.2.1 Solids. - 4.2.2 Aerosols. - 4.2.3 Liquids. - 4.3 Molecular Absorption in Gases. - 4.3.1 Thermal Emission and Radiation Laws. - 4.3.2 Planck's Spectral Distribution Law. - 4.3.3 Radiative Excitation Processes in Molecules. - 4.3.4 Inelastic Collisional Processes. - 4.3.5 Maintenance of Thermal Equilibrium Distributions. - 4.4 The Two-Level Atom. - 4.4.1 Microscopic Radiative Transfer Equation. - 4.4.2 Effects of Collisions on State Populations. - 4.5 Absorption in Molecular Lines and Bands. - 4.5.1 Molecular Rotation: The Rigid Rotator. - 4.5.2 Molecular Vibration and Rotation: The Vibrating Rotator. - 4.5.3 Line Strengths. - 4.6 Absorption Processes in the UV/Visible. - 4.7 Summary. - 5 Principles of Radiative Transfer. - 5.1 Introduction. - 5.2 Boundary Properties of Planetary Media. - 5.2.1 Thermal Emission from a Surface. - 5.2.2 Absorption by a Surface. - 5.2.3 Kirchhoff's Law for Surfaces. - 5.2.4 Surface Reflection: The BRDF. - 5.2.5 Albedo for Collimated lncidence. - 5.2.6 The Flux Reflectance, or Albedo: Diffuse Incidence. - 5.2.7 Analytic Reflectance Expressions. - 5.2.8 The Opposition Effect. - 5.2.9 Specular Reflection from the Sea Surface. - 5.2.10 Transmission through a Slab Medium. - 5.2.11 Spherical, or Bond Albedo. - 5.3 Absorption and Scattering in Planetary Media. - 5.3.1 Kirchhoff's Law for Volume Absorption and Emission. - 5.3.2 Differential Equation of Radiative Transfer. - 5.4 Solution of the Radiative Transfer Equation for Zero Scattering. - 5.4.1 Solution with Zero Scattering in Slab Geometry. - 5.4.2 Half-Range Quantities in a Slab Geometry. - 5.4.3 Formal Solution in a Slab Geometry. - 5.5 Gray Slab Medium in Local Thermodynamic Equilibrium. - 5.6 Formal Solution Including Scattering and Emission. - 5.7 Radiative Heating Rate. - 5.7.1 Generalized Gershun's Law. - 5.7.2 Warming Rate, or the Temperature Tendency. - 5.7.3 Actinic Radiation, Photolysis Rate, and Dose Rate. - 5.8 Summary. - 6 Formulation of Radiative Transfer Problems. - 6.1 Introduction. - 6.2 Separation into Diffuse and Direct (Solar) Components. - 6.2.1 Lower Boundary Conditions. - 6.2.2 Multiple Scattering. - 6.2.3 Azimuth lndependence of Flux and Mean Intensity. - 6.3 Azimuthal Dependence of the Radiation Field. - 6.4 Spherical Shell Geometry. - 6.5 Nonstratified Media. - 6.6 Radiative Transfer in the Atmosphere-Ocean System. - 6.6.1 Two Stratified Media with Different Indices of Refraction. - 6.7 Examples of Phase Functions. - 6.7.1 Rayleigh Phase Function. - 6.7.2 The Mie-Debye Phase Function. - 6.8 Scaling Transformations Useful for Anisotropic Scattering. - 6.8.1The [Delta]-Isotropic Approximation. - 6.8.2 The [Delta]- Two-Term Approximation. - 6.8.3 Remarks on Low-Order Scaling Approximations. - 6.8.4 The [Delta]-N Approximation: Arbitrary N. - 6.8.5 Mathematical and Physical Meaning of the Scaling. - 6.9 Prototype Problems in Radiative Transfer Theory. - 6.9.1 Prototype Problem 1: Uniform Illumination. - 6.9.2 Prototype Problem 2: Constant lmbedded Source. - 6.9.3 Prototype Problem 3: Diffuse Reflection Problem. - 6.9.4 Boundary Conditions: Reflecting and Emitting Surface. - 6.10 Reciprocity, Duality, and Inhomogeneaus Media. - 6.11 Effects of Surface Reflection on the Radiation Field. - 6.12 Integral Equation Formulation of Radiative Transfer. - 6.13 Probabilistic Aspects of Radiative Transfer. - 6.13.1 The Escape Probability. - 6.14 Summary. - 7 Approximate Salutions of Prototype Problems. - 7.1 Introduction. - 7.2 Separation of the Radiation Field into Orders of Scattering. - 7.2.1 Lambda Iteration: The Multiple-Scaltering Series. - 7.2.2 Single-Scattered Contribution from Ground Reflection: The Planetary Problem. - 7.3 The Two-Stream Approximation: Isotropic Scattering. - 7.3.1 Approximate Differential Equations. - 7.3.2 The Mean lnclination: Possible Choices for [My]. - 7.3.3 Prototype Problem 1: Differential-Equation Approach. - 7.3.4 Prototype Problem 2: lmbedded Source. - 7.3.5 Prototype Problem 3: Beam Incidence. - 7.4 Conservative Scattering in a Finite Slab. - 7.5 Anisotropic Scattering. - 7.5.1 Two-Stream Versus Eddington Approximations. - 7.5.2 The Backscattering Coefficients. - 7.5.3 Two-Stream Salutions for Anisotropic Scattering. - 7.5.4 Scaling Approximations for Anisotropic Scattering. - 7.5.5 Generalized Two-Stream Equations. - 7.6 Accuracy of the Two-Stream Method. - 7.7 Final Comments on the Two-Stream Method. - 7.8 Summary. - 8 Accurate Numerical Salutions of Prototype Problems. - 8.1 Introduction. - 8.2 Discrete-Ordinate Method - Isotropic Scattering. - 8.2.1 Quadrature Formulas. - 8.2.2 The Double-Gauss Method. - 8.3 Anisotropic Scattering. - 8.3.1 General Considerations. - 8.3.2 Quadrature Rule. - 8.4 Matrix Formulation of the Discrete-Ordinate Method. - 8.4.1 Two- and Four-Stream Approximations. - 8.4.2 Multistream Approximation ( N Arbitrary). - 8.5 Matrix Eigensolutions. - 8.5.1 Two-Stream Salutions ( N = 1). - 8.5.2 Multistream Solutions ( N Arbitrary). - 8.5.3 Inhomogeneous Solution. - 8.5.4 General Solution. - 8.6 Source Function and Angular Distributions. - 8.7 Boundary Conditions - Removal of Ill-Conditioning. - 8.7.1 Boundary Conditions. - 8.7.2 Removal of Numerical lll-Conditioning. - 8.8 Inhomogeneous Multilayered Media. - 8.8.1 General Solution - Boundary and Layer Interface Conditions. - 8.8.2 Source Functions and Angular Distributions. - 8.8.3 Numerical lmplementation of the Discrete-Ordinate Method. - 8.9 Correction of the Truncated Intensity Field. - 8.9.1 The Nakajima-Tanaka Correction Procedure. - 8.9.2 Computed lntensity Distributions for the Standard Problem. - 8.10 The Coupled Atmosphere-Ocean Problem. - 8.10.1 Discretized Equations for the Atmosphere-Ocean System. - 8.10.2 Quadrature and General Solution. - 8.10.3 Boundary, Continuity, and Atmosphere-Ocean Interface Conditions. - 8.11 The Doubling-Adding and the Matrix Operator Methods. - 8.11.1 Matrix-Exponential Solution - Formal Derivation of Doubling Rules. - 8.11.2 Connection between Doubling and Discrete-Ordinate Methods. - 8.11.3 Intuitive Derivation of the Doubling Rules - Adding of Dissimilar Layers. - 8.12 Other Accurate Methods. - 8.12.1 The Spherical-Harmonics Method. - 8.12.2 Invariant lmbedding. - 8.12.3 Iteration Methods. - 8.12.4 The Feautrier Method. - 8.12.5 Integral Equation Approach. - 8.12.6 Monte Carlo Methods. - 8.13 Summary. - 9 Shortwave Radiative Transfer. - 9.1 Introduction. - 9.2 Solar Radiation. - 9.3 Optical Properties of the Earth-Atmosphere System. - 9.3.1 Gaseaus Absorption and Penetration Depth. - 9.3.2 Optical Properlies of Atmospheric Aerosols. - 9.3.3 Optical Properties of Warm (Liquid Water) Clouds. - 9.3.4 Optical Properties of Ice Clouds. - 9.3.5 Optical Properties of the Ocean. - 9.3.6 Optical Properties of Snow and Ice. - 9.4 Modeling of Shortwave Radiative Effects in the Atmosphere. - 9.4.1 Spectral Averaging Procedure: The Chandrasekhar Mean. - 9.4.2 Solar Warming Rates Due to Ozone, Aerosols, and Clouds. - 9.4.3 Computation of Photolysis Rates. - 9.4.4 UV Transmission: Relation to Ozone Abundance. - 9.4.5 UV Transmission and Dose Rates at the Earth 's Surface. - 9.4.6 Comparisan of Measured and Computed UV Irradiance at the Surface. - 9.5 Modeling of Shortwave Radiation in the Ocean. - 9.5.1 Diffuse Radiation: Attenuation in the Ocean. - 9.5.2 Two-Stream Model Appropriate for Deep Water. - 9.5.3 Backscattering by Ocean Particles: The Role of Shape Factars. - 9.5.4 Approximate Expressions for the Remotely Sensed Reflectance. - 9.5.5 Modefing the UV Transmission into the Ocean. - 9.5.6 Measured and Computed UV Irradiance in the Ocean. - 9.6 Interaction of Solar Radiation with Snow and Ice. - 9.7 Summary. - 1 0 Transmission in Spectrally Complex Media. - 10.1 Introduction. - 10.2 Transmission in an Isolated Line. - 10.2.1 Isolated Lorentz Line. - 10.3 Band Models. - 10.3.1 The Elsasser Band Model. - 10.3.2 Distributed Line lntensities. - 10.3.3 Random Band Model. - 10.3.4 MODTRAN: A Moderate-Resolution Band Model. - 10.4 Spectral Mapping Transformations for Homogeneous Media. - 10.4.1 Method of the k-Distribution. - 10.4.2 k-Distribution for the Malkmus Band Model. - 10.5 Transmission in Nongray Inhomogeneaus Media. - 10.5.1 The H- C-G Scaling Approximation. - 10.5.2 LBL Transmission Computation: Inhomogeneaus Paths. - 10.5.3 Inclusion of Multiple Scattering in LBL Computations. - 10.5.4 The Correlated-k Method. - 10.5.5 Inclusion of Multiple Scattering in the Correlated-k Method. - 10.6 Summary. - 11 Radiative Transfer in Nongray Media. - 11.1 lntroduction. - 11.2 Radiative Flux and Heating Rate: Clear-Sky Conditions. - 11.2.1 Monochromatic Flux Equations. - 11.2.2 Wide-Band Emittance Models. - 11.2.3 Narrow-Band Absorption Model. - 11.2.4 Band Overlap. - 11.2.5 The Diffusivity Approximation. - 11.2.6 Equationsfor the Heating Rate. - 11.2.7 Clear-Sky Radiative Cooling: Nonisothermal Medium. - 11.2.8 Computations of Terrestrial Cooling Rates. - 11.3 The IR Radiative Impact of Clouds and Aerosols. - 11.3.1Heating Rate in an Idealized Cloud. - 11.3.2 Detailed Longwave Radiative Effects of Clouds. - 11.3.3 Accurate Treatment Including Scattering. - 11.4 Summary. - 12 The Role of Radiation in Climate. - 12.1 Introduction. - 12.2 Radiative Equilibrium with Zero Visible Opacity. - 12.3 Radiative Equilibrium with Finite Visible Opacity. - 12.4 Radiative-Convective Equilibrium. - 12.5 The Concept of the Emission Height. - 12.6 Effects of spectral window. - 12.7 Radiative forcing. - 12.8 Climate impact of clouds. - 12.8.1 Longwave Effects of water clouds. - 12.8.2 Shortwave effects of water clouds. - 12.8.3 Combined shortwave and longewave effects of clouds. - 12.9 Climate impact of cloud height. - 12.10 Cloud and aerosol forcing. - 12.10.1 Aerosol forcing. - 12.11 Water-Vapor Feedback. - 12.12 Effects of carbon dioxide changes. - 12.13 Greenhouse effect from individual gas species. - 12.14 Summary. - Appendices. - A Nomenclature: Glossary of symbols. - B Physical constants. - C Model atmospheres. - D Ocean optics nomenclature. - E Reflectance and transmittance at an interface. - Index.
    Description / Table of Contents: Radiative transfer is important to a range of disciplines, from the study of greenhause warming to stellar atmospheres and ocean optics. This text provides a foundation of the theoretical and practical aspects of radiative transfer for senior undergraduate and graduate students of atmospheric, oceanic, and environmental sciences. With an emphasis on formulation, judicial approximations and numerical solutions of the radiative transfer equation, Radiative Transfer in the Atmosphere and Ocean fills a gap between descriptive texts covering the physical processes and the practical numerical approaches needed in research. Designed to convey physical insight into the transfer process, it can also be used as a self-contained manual for practitioners who require accurate modeling of the effects of solar and infrared radiation on natural systems. Radiative Transfer in the Atmosphere and Ocean includes a unified treatment of radiation within both the atmosphere and ocean, boundary properties (such as reflectionand absorptance of solid surfaces), heuristic models (Lorentzatom, two-level atom, rotating vibrator), and extensive use of two-stream and approximate methods. State of the-art computational methods are illustrated by a thorough treatment of the discrete-ordinates technique and the correlated-k band absorption method. Exercises and problem sets provide practice in both formulation and solution techniques. Applications to the subjects of solar UV penetration of the atmosphere / ocean system and the greenhause effect serve to illustrate the use of such techniques in modern research. This self-contained, systematic treatment will prepare the student in solving radiative transfer problems across a broad range of subjects.
    Type of Medium: Monograph available for loan
    Pages: XXVI, 517 S. : graph. Darst.
    Edition: 1. publ.
    ISBN: 0521401240
    Series Statement: Cambridge atmospheric and space science series
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...