ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
1
Monograph available for loan
Monograph available for loan
Chantilly, Va. : Mineralogical Society of America
Call number: 11/M 08.0105
In: Reviews in mineralogy & geochemistry
Description / Table of Contents: Hydrogen may be the most abundant element in the universe, but in science and in nature oxygen has an importance that is disproportionate to its abundance. Human beings tend to take it for granted because it is all around us and we breathe it, but consider the fact that oxygen is so reactive that in a planetary setting it is largely unstable in its elemental state. Were it not for the constant activity of photosynthetic plants and a minor amount of photo dissociation in the upper atmosphere, we would not have an oxygen-bearing atmosphere and we would not be here. Equally, the most important compound of oxygen is water, without which life (in the sense that we know it) could not exist. The role of water in virtually all geologic processes is profound, from formation of ore deposits to igneous petrogenesis to metamorphism to erosion and sedimentation. In planetary science, oxygen has a dual importance. First and foremost is its critical role in so many fundamental Solar System processes. The very nature of the terrestrial planets in our own Solar System would be much different had the oxygen to carbon ratio in the early solar nebula been somewhat lower than it was, because elements such as calcium and iron and titanium would have been locked up during condensation as carbides, sulfides and nitrides and even (in the case of silicon) partly as metals rather than silicates and oxides. Equally, the role of water ice in the evolution of our Solar System is important in the early accretion and growth of the giant planets and especially Jupiter, which exerted a major control over how most of the other planets formed. On a smaller scale, oxygen plays a critical role in the diverse kinds of physical evolution of large rocky planets, because the internal oxidation state strongly influences the formation and evolution of the core, mantle and crust of differentiated planets such as the Earth. Consider that basaltic volcanism may be a nearly universal phenomenon among the evolved terrestrial planets, yet there are basalts and basalts. The basalts of Earth (mostly), Earth's Moon, Vesta (as represented by the HED meteorites) and Mars are all broadly tholeiitic and yet very different from one another, and one of the primary differences is in their relative oxidation states (for that matter, consider the differences between tholeiitic and calc-alkaline magma series on Earth). But there is another way that oxygen has proven to be hugely important in planetary science, and that is as a critical scientific clue to processes and conditions and even sources of materials. Understanding the formation and evolution of our Solar System involves reconstructing processes and events that occurred more than 4.5 Ga ago, and for which the only contemporary examples are occurring hundreds of light years away. It is a detective story in which most of the clues come from the laboratory analysis of the products of those ancient processes and events, especially those that have been preserved nearly unchanged since their formation at the Solar System's birth: meteorites; comets; and interplanetary dust particles. For example, the oxidation state of diverse early Solar System materials ranges from highly oxidized (ferric iron) to so reducing that some silicon exists in the metallic state and refractory lithophile elements such as calcium exist occur in sulfides rather than in silicates or carbonates. These variations reflect highly different environments that existed in different places and at different times. Even more crucial has been the use of oxygen 3-isotope variations, which began almost accidentally in 1973 with an attempt to do oxygen isotope thermometry on high-temperature solar nebula grains (Ca-, Al-rich inclusions) but ended with the remarkable discovery of non-mass-dependent oxygen isotope variations in high-temperature materials from the earliest Solar System. The presolar nebula was found to be very heterogeneous in its isotopic composition, and virtually every different planet and asteroid for which we have samples has a unique oxygen-isotopic fingerprint. The idea for this book originated with Jim Papike, who suggested the idea of a study initiative (and, ultimately, a published volume) focused on the element that is so critically important in so many ways to planetary science. He recognized that oxygen is such a constant theme through all aspects of planetary science that the proposed initiative would serve to bring together scientists from a wide range of disciplines for the kind of cross-cutting dialogue that occurs all too rarely these days. In this sense the Oxygen Initiative is modeled on the Basaltic Volcanism Study Project, which culminated in what remains to this day a hugely important reference volume (Basaltic Volcanism Study Project 1981). After obtaining community input and feedback, primarily through the Curation and Analysis Planning Team for Extraterrestrial Materials (CAPTEM) and the Management Operations Working Group for NASA's Cosmochemistry Program, a team of scientists was assembled who would serve as chapter writing leads, and the initiative was formally proposed to and accepted by the Lunar and Planetary Institute (LPI; Dr. Stephen Mackwell, Director) for sponsorship. A formal proposal was then submitted to and approved by the Mineralogical Society of America to publish the resulting volume in the Reviews in Mineralogy and Geochemistry (RiMG) series. Three open workshops were held as preludes to the book: Oxygen in the Terrestrial Planets, held in Santa Fe, NM July 20-23, 2004; Oxygen in Asteroids and Meteorites, held in Flagstaff, AZ June 2-3, 2005; and Oxygen in Earliest Solar System Materials and Processes (and including the outer planets and comets), held in Gatlinburg, TN September 19-22, 2005. The workshops were each organized around a small number of sessions (typically 4-6), each focusing on a particular topic and consisting of invited talks, shorter contributed talks, and ample time for discussion after each talk. In all of the meetings, the extended discussion periods were lively and animated, often bubbling over into the breaks and later social events. As a consequence of the cross-cutting approach, the final book spans a wide range of fields relating to oxygen, from the stellar nucleosynthesis of oxygen, to its occurrence in the interstellar medium, to the oxidation and isotopic record preserved in 4.56 Ga grains formed at the Solar System's birth, to its abundance and speciation in planets large and small, to its role in the petrologic and physical evolution of the terrestrial planets.
Type of Medium: Monograph available for loan
Pages: XX, 598 S. , Ill., graph. Darst.
ISBN: 0-939950-80-4 , 978-0-939950-80-5
ISSN: 1529-6466
Series Statement: Reviews in mineralogy & geochemistry 68
Classification:
Geochemistry
Note: Chapter 1. Introduction by Glenn J. MacPherson, p. 1 - 4 Chapter 2. Oxygen isotopes in the early Solar System - A historical perspective by Robert N. Clayton, p. 5 - 14 Chapter 3. Abundance, notation, and fractionation of light stable isotopes by Robert E. Criss and James Farquhar, p. 15 - 30 Chapter 4. Nucleosynthesis and chemical evolution of oxygen by Bradley S. Meyer, Larry R. Nittler, Ann N. Nguyen, and Scott Messenger. p. 31 - 54 Chapter 5. Oxygen in the interstellar medium by Adam G. Jensen, F. Markwick-Kemper, and Theodore P. Snow, p. 55 - 72 Chapter 6. Oxygen in the Sun by Andrew M. Davis, Ko Hashizume, Marc Chaussidon, Trevor R. Ireland, Carlos Allende Prieto, and David L. Lambert, p. 73 - 92 Chapter 7. Redox conditions in the solar nebula: observational, experimental, and theoretical constraints by Lawrence Grossman, John R. Beckett, Alexei V. Fedkin, Steven B. Simon, and Fred J. Ciesla, p. 93 - 140 Chapter 8. Oxygen isotopes of chondritic components by Hisayoshi Yurimoto, Alexander N. Krot, Byeon-Gak Choi, Jerome Aléon, Takuya Kunihiro, and Adrian J. Brearley, p. 141 - 186 Chapter 9. Mass-independent oxygen isotope variation in the solar nebula by Edward D. Young, Kyoshi Kuramoto, Rudolph A. Marcus, Hisayoshi Yurimoto, and Stein B. Jacobsen, p. 187 - 218 Chapter 10. Oxygen and other volatiles in the giant planets and their satellites by Michael H. Wong, Jonathan I. Lunine, Sushil K. Atreya, Torrence Johnson, Paul R. Mahaffy, Tobias C. Owen, and Thérèse Encrenaz, p. 219 - 246 Chapter 11. Oxygen in comets and interplanetary dust particles by Scott A. Sandford, Scott Messenger, Michael DiSanti, Lindsay Keller, and Kathrin Altwegg, p. 247 - 272 Chapter 12. Oxygen and asteroids by Thomas H. Burbine, Andrew S. Rivkin, Sarah K. Noble, Thais Mothé-Diniz, Wliiam F. Bottke, Timothy J. McCoy, M. Darby Dyar, anf Cristina A. Thomas, p. 273 - 344 Chapter 13. Oxygen isotopes in asteroidal materials by Iasn A. Franchi, p. 345 - 398 Chapter 14. Oxygen isotopic composition and chemical correlations in meteorites and the terrestrial planets by David W. Mittlefehldt, Robert N. Clayton, Michael J. Drake, anf Kevin Righter, p. 399 - 428 Chapter 15. Record of low-temperature alteration in asteroids by Michael E. Zolensky, Alexander N. Krot, and Gretchen Benedix, p. 429 - 462 Chapter 16. The oxygen cycle of the terrestrial planets: insights into the processing and history of oxygen in surface environments by James Farquhar and David T. Johnston, p. 463 - 492 Chapter 17. Redox conditions on small bodies, the Moon and Mars by Meenakshi Wadhwa, p. 493 - 510 Chapter 18. Terrestrial oxygen isotope variations and their implications for planetary lithospheres by Robert E. Criss, p. 511 - 526 Chapter 19. Basalts as probes of planetary interior redox state by Christopher D. K. Herd, p. 527 - 554 Chapter 20. Rheological consequences of redox state by Stephen Mackwell, p. 555 - 570 Appendix: meteorites - a brief tutorial by David W. Mittlefehldt, p. 571 - 590
Location: Reading room
Branch Library: GFZ Library
Location Call Number Expected Availability
BibTip Others were also interested in ...
Associated Volumes
  • 2
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Call number: 11/M 08.0443
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Minerals are intrinsically resistant to the processes that homogenize silicate liquids—their compositions thus yield an archive of volcanic and magmatic processes that are invisible at the whole rock scale. New experiments, and recent advances in micro-analytical techniques open a new realm of detail regarding the mineralogical record; this volume summarizes some of this progress. The alliance of the sub-fields reviewed in this volume bear upon fundamental issues of volcanology: At what depths are eruptions triggered, and over what time scales? Where and why do magmas coalesce before ascent? If magmas stagnate for thousands of years, what forces are responsible for initiating final ascent, or the degassing processes that accelerate upward motion? To the extent that we can answer these questions, we move towards formulating tests of mechanistic models of volcanic eruptions (e.g., Wilson, 1980; Slezin, 2003; Scandone et al., 2007), and hypotheses of the tectonic controls on magma transport (e.g., ten Brink and Brocher, 1987; Takada, 1994; Putirka and Busby, 2007). Our goal, in part, is to review how minerals can be used to understand volcanic systems and the processes that shape them; we also hope that this work will spur new and integrated studies of volcanic systems. Our review begins by tracing the origins of mineral grains, and methods to estimate pressures (P) and temperatures (T) of crystallization. Hammer shows how "dynamic" experiments (conducted with varying P or T) yield important insights into crystal growth. Chapters by Putirka, Anderson, and Blundy and Cashman review various igneous geothermometers and geobarometers and introduce new calibrations. Among these chapters are many familiar models involving olivine, amphibole, feldspar, pyroxene, and spinel. Blundy and Cashman introduce new methods based on phase equilibria, and in another chapter, Hansteen and Klügel review P estimation based on densities of entrapped fluids and appropriate equations of state. Rutherford's chapter returns to the issue of disequilibrium, with a review of methods to estimate magma ascent rates, and a summary of results. Our volume then moves to a review of melt inclusions. Kent shows how pre-mixed magma compositions can be preserved as inclusions, providing a window into pre-eruptive conditions. Métrich and Wallace review the volatile contents in basaltic melt inclusions and "magma degassing paths". Such methods rely upon vapor saturation pressures, which are derived from experimentally calibrated models. Chapters by Moore and Blundy and Cashman test two of the most important models, by Newman and Lowenstern (2002) (VolatileCalc) and Papale et al. (2006). Moore provides a guide to the appropriate use of these models, and their respective errors. The next four chapters document insights obtained from isotopic studies and diffusion profiles. Ramos and Tepley review developments of micro-analytical isotope measurements, which now have the potential to elucidate even the most cryptic of open system behaviors. Cooper and Reid examine the time scales for such processes through U-series age dating techniques, and Bindeman reviews oxygen isotopes and their uses as tracers of both magmas and crystals. Costa then reviews yet another means to estimate the rates of magmatic processes, using mineral diffusion profiles, with important implications for magma processing. In the next two chapters, Streck reviews an array of imaging methods and mineral textures, and their potential for disentangling mixed magmas, and Armienti takes a new look at the analysis of crystal size distributions (CSD), with applications to Mt. Etna. Our volume concludes with a chapter by Bachmann and Bergantz summarizing compositional zonations and a review of the thermal and compositional forces that drive open system behavior. Finally, descriptions of many of the most common analytical approaches are also reviewed within these chapters. Analytical topics include: secondary ion mass spectrometry (Blundy and Cashman; Kent); electron microprobe (Blundy and Cashman; Kent; Métrich and Wallace; laser ablation ICP-MS (Kent; Ramos and Tepley); Fourier transform infrared spectroscopy (Moore; Métrich and Wallace); microsampling and isotope mass spectrometry (Ramos and Tepley); U-series measurement techniques (Cooper and Reid); Nomarski differential interference contrasts (Streck); micro-Raman spectroscopy (Métrich and Wallace); back-scattered electron microscopy, and cathodoluminescence (Blundy and Cashman). As noted, our hope is that integrated studies can bring us closer to understanding how volcanic systems evolve and why eruptions occur. Our primary goal is to review how minerals can be used to understand volcanic systems; we also hope that this review might spur new and integrated studies of volcanic systems.
    Type of Medium: Monograph available for loan
    Pages: xiv, 674 S. , Ill., graph. Darst.
    ISBN: 0-939950-83-9 , 978-0-939950-83-6
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 69
    Classification:
    Petrology, Petrography
    Note: Chapter 1. Introduction to Minerals, Inclusions and Volcanic Processes by Keith D. Putirka, p. 1 - 8 Chapter 2. Experimental Studies of the Kinetics and Energetics of Magma Crystallization by Julia E. Hammer, p. 9 - 60 Chapter 3. Thermometers and Barometers for Volcanic Systems by Keith D. Putirka, p. 61 - 120 Chapter 4. Thermometers and Thermobarometers in Granitic Systems by J. Lawford Anderson, Andrew P. Barth, Jospeh L. Wooden, and Frank Mazdab, p. 121 - 142 Chapter 5. Fluid Inclusion Thermobarometry as a Tracer for Magmatic Processes by Thor H. Hansteen and Andreas Klügel, p. 143 - 178 Chapter 6. Petrologic Reconstruction of Magmatic System Variables and Processes by Jon Blundy and Kathy Cashman, p. 179 - 240 Chapter 7. Magma Ascent Rates by Malcolm J. Rutherford, p. 241 - 272 Chapter 8. Melt Inclusions in Basaltic and Related Volcanic Rocks by Adam J.R. Kent, p. 273 - 332 Chapter 9. Interpreting H2O and CO2 Contents in Melt Inclusions: Constraints from Solubility Experiments and Modeling by Gordon Moore, p. 333 - 362 Chapter 10. Volatile Abundances in Basaltic Magmas and Their Degassing Paths Tracked by Melt Inclusions by Nicole Métrich and Paul J. Wallace, p. 363 - 402 Chapter 11. Inter- and Intracrystalline Isotopic Disequilibria: Techniques and Applications by Frank C. Ramos and Frank J. Tepley III, p. 403 - 444 Chapter 12. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis by Ilya Bindeman, p. 445 - 478 Chapter 13. Uranium-series Crystal Ages by Kari M. Cooper, Mary R. Reid, p. 479 - 544 Chapter 14. Time Scales of Magmatic Processes from Modeling the Zoning Patterns of Crystals by Fidel Costa, Ralf Dohmen, and Sumit Chakraborty, p. 545 - 594 Chapter 15. Mineral Textures and Zoning as Evidence for Open System Processes by Martin J. Streck, p. 595 - 622 Chapter 16. Decryption of Igneous Rock Textures: Crystal Size Distribution Tools by Pietro Armienti, p. 623 - 650 Chapter 17. Deciphering Magma Chamber Dynamics from Styles of Compositional Zoning in Large Silicic Ash Flow Sheets by Olivier Bachmann and George W. Bergantz, p. 651 - 674
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Call number: 11/M 07.0429
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The idea for this book was conceived in early June, 2005 at a paleoaltimetry workshop held at Lehigh University, Lehigh, Pennsyalvania and organized by Dork Sahagian. The workshop was funded by the tectonics program at NSF, and was designed to bring together researchers in paleoaltimetry to discuss different techniques and focus the community on ways of improving paleoelevation estimates and consequent interpretations of geodynamics and tectonics. At this meeting, some commented that a comprehensive volume describing the different methods could help advance the field. I offered to contact the Mineralogical Society of America and the Geochemical Society about publishing a RiMG volume on paleoaltimetry. Because many of the techniques used to infer paleoelevations are geochemically-based or deal with thermodynamic principles, the GS and MSA agreed to the project. Two years and roughly 1000 e-mails later, our book has arrived. The book is organized into 4 sections: Geodynamic and geomorphologic rationale (Clark). This chapter provides the broad rationale behind paleoaltimetry, i.e., why we study it. Stable isotope proxies. These 4 chapters cover theory of stable isotopes in precipitation and their response to altitudinal gradients (Rowley), and stable isotopes sytematics in paleosols (Quade, Garzione and Eiler), silicates (Mulch and Chamberlain) and fossils (Kohn and Dettman). Proxies of atmospheric properties. These 4 chapters cover temperature lapse rates (Meyer), entropy (Forest), and atmospheric pressure proxies, including total atmospheric pressure from gas bubbles in basalt (Sahagian and Proussevitch), and the partial pressure of CO2 (Kouwenberg, Kürshner, and McElwain). Note that clumped isotope thermometry (Quade, Garzione and Eiler) also provides direct estimates of temperature. Radiogenic and cosmogenic nuclides. These 2 chapters cover low-temperature thermochronologic approaches (Reiners) and cosmogenic isotopes (Riihimaki and Libarkin). Some chapters overlap in general content (e.g., basic principles of stable isotopes in precipitation are covered to different degrees in all stable isotope chapters), but no attempt was made to limit authors' discussion of principles, or somehow attempt to arrive at a "consensus view" on any specific topic. Because science advances by critical discussion of concepts, such restrictions were viewed as counterproductive. This does mean that different chapters may present different views on reliability of paleoelevation estimates, and readers are advised to read other chapters in the book on related topics – they may be more closely linked than they might at first appear! I hope readers of this book will discover and appreciate the synergy among paleoaltimetry, climate change, and tectonic geomorphology. These interrelationships create a complex, yet rich field of scientific enquiry that in turn offers insights into climate and geodynamics.
    Type of Medium: Monograph available for loan
    Pages: X, 278 S. , graph. Darst.
    ISBN: 0-939950-78-2 , 978-0-939950-78-2
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 66
    Classification:
    Geochemistry
    Note: Chapter 1. The Significance of Paleotopography by Marin K. Clark, p. 1 - 22 Chapter 2. Stable Isotope-Based Paleoaltimetry: Theory and Validation by David B. Rowley, p. 23 - 52 Chapter 3. Paleoelevation Reconstruction Using Pedogenic Carbonates by Jay Quade, Carmala Garzione, and John Eiler, p. 53 - 88 Chapter 4. Stable Isotope Paleoaltimetry in Orogenic Belts – The Silicate Record in Surface and Crustal Geological Archives by Andreas Mulch and C. Page Chamberlain, p. 89 - 118 Chapter 5. Paleoaltimetry from Stable Isotope Compositions of Fossils by Matthew J. Kohn and David L. Dettman, p. 119 - 154 Chapter 6. A Review of Paleotemperature–Lapse Rate Methods for Estimating Paleoelevation from Fossil Floras by Herbert W. Meyer, p. 155 - 172 Chapter 7. Paleoaltimetry: A Review of Thermodynamic Methods by Chris E. Forest, p. 173 - 194 Chapter 8. Paleoelevation Measurement on the Basis of Vesicular Basalts by Dork Sahagian and Alex Proussevitch, p. 195 - 214 Chapter 9. Stomatal Frequency Change Over Altitudinal Gradients: Prospects for Paleoaltimetry by Lenny L. R. Kouwenberg, Wolfram M. Kürschner, and Jennifer C. McElwain, p. 215 - 242 Chapter 10. Thermochronologic Approaches to Paleotopography by Peter W. Reiners, p. 243 - 268 Chapter 11. Terrestrial Cosmogenic Nuclides as Paleoaltimetric Proxies by Catherine A. Riihimaki and Julie C. Libarkin, p. 269 - 278
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Call number: 11/M 07.0317
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Fluids rich in water, carbon and sulfur species and a variety of dissolved salts are a ubiquitous transport medium for heat and matter in the Earth’s interior. Fluid transport through the upper mantle and crust controls the origin of magmatism above subduction zones and results in natural risks of explosive volcanism. Fluids passing through rocks affect the chemical and heat budget of the global oceans, and can be utilized as a source of geothermal energy on land. Fluid transport is a key to the formation and the practical utilization of natural resources, from the origin of hydrothermal mineral deposits, through the exploitation of gaseous and liquid hydrocarbons as sources of energy and essential raw materials, to the subsurface storage of waste materials such as CO2. Different sources of fluids and variable paths of recycling volatile components from the hydrosphere and atmosphere through the solid interior of the Earth lead to a broad range of fluid compositions, from aqueous liquids and gases through water-rich silicate or salt melts to carbon-rich endmember compositions. Different rock regimes in the crust and mantle generate characteristic ranges of fluid composition, which depending on pressure, temperature and composition are miscible to greatly variable degrees. For example, aqueous liquids and vapors are increasingly miscible at elevated pressure and temperature. The degree of this miscibility is, however, greatly influenced by the presence of additional carbonic or salt components. A wide range of fluid–fluid interactions results from this partial miscibility of crustal fluids. Vastly different chemical and physical properties of variably miscible fluids, combined with fluid flow from one pressure – temperature regime to another, therefore have major consequences for the chemical and physical evolution of the crust and mantle. Several recent textbooks and review articles have addressed the role and diverse aspects of fluids in crustal processes. However, immiscibility of fluids and the associated phenomena of m ultiphase fluid flow are generally dealt with only in subsections with respect to specific environments and aspects of fluid mediated processes. This volume of Reviews in Mineralogy and Geochemistry attempts to fill this gap and to explicitly focus on the role that co-existing fluids play in the diverse geologic environments. It brings together the previously somewhat detached literature on fluid–fluid interactions in continental, volcanic, submarine and subduction zone environments. It emphasizes that fluid mixing and unmixing are widespread processes that may occur in all geologic environments of the entire crust and upper mantle. Despite different P-T conditions, the fundamental processes are analogous in the different settings.
    Type of Medium: Monograph available for loan
    Pages: xii, 430 S.
    ISBN: 0-939950-77-4 , 978-0-939950-77-5
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 65
    Classification:
    Mineralogy
    Note: Chapter 1. Fluid–Fluid Interactions in the Earth’s Lithosphere by Axel Liebscher and Christoph A. Heinrich, p. 1 - 14 Chapter 2. Experimental Studies in Model Fluid Systems by Axel Liebscher, p. 15 - 48 Chapter 3. Equations of State for Complex Fluids by Matthias Gottschalk, p. 49 - 98 Chapter 4. Liquid Immiscibility in Silicate Melts and Related Systems by Alan B. Thompson, Maarten Aerts, and Alistair C. Hack, p. 99 - 128 Chapter 5. Phase Relations Involving Hydrous Silicate Melts, Aqueous Fluids, and Minerals by Alistair C. Hack, Alan B. Thompson, and Maarten Aerts, p. 129 - 186 Chapter 6. Numerical Simulation of Multiphase Fluid Flow in Hydrothermal Systems by Thomas Driesner and Sebastian Geiger, p. 187 - 212 Chapter 7. Fluid Phase Separation Processes in Submarine Hydrothermal Systems by Dionysis I. Foustoukos and William E. Seyfried, Jr., p. 213 - 240 Chapter 8. Fluids in Hydrocarbon Basins by Karen S. Pedersen and Peter L. Christensen, p. 241 - 258 Chapter 9. Fluid-Fluid Interactions in Geothermal Systems by Stefan Arnorsson and Andri Stefansson, Jon Orn Bjarnason, p. 259 - 312 Chapter 10. Fluid Immiscibility in Volcanic Environment by James D. Webster and Charles W. Mandeville, p. 313 - 362 Chapter 11. Fluid-Fluid Interactions in Magmatic-Hydrothermal Ore Formation by Christoph A. Heinrich, p. 363 - 388 Chapter 12. Fluid Immiscibility in Metamorphic Rocks by Wilhelm Heinrich, p. 389 - 430
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Call number: 11/M 07.0430
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Over 25 years ago, Volume 9 of Reviews in Mineralogy: Amphiboles and Other Hydrous Pyriboles seemed to contain all that was possible to know about this group of fascinating minerals. The subsequent twenty-five years have shown that this assessment was wrong: Nature was keeping a lot in reserve, and has since revealed considerable new complexity in the constitution and behavior of amphiboles. Some of the advances in knowledge have been due to the use of new experimental techniques, some have been due to the investigation of hitherto neglected rock-types, and some have been due to the development of new ideas. The identification and systematic investigation of variable LLE (Light Lithophile Elements), particularly Li and H, led to the identification of several new amphibole species and the recognition that variable Li and H play an important role in chemical variations in amphiboles from both igneous and metamorphic parageneses. In turn, this work drove the development of microbeam SIMS to analyze LLE in amphiboles. Detailed mineralogical work on metasyenites showed hitherto unexpected solid-solution between Na and Li at the M(4) site in monoclinic amphiboles, a discovery that has upset the current scheme of amphibole classification and nomenclature and initiated new efforts in this direction. Systematic and well-planned synthesis of amphiboles, combined with careful spectroscopy, has greatly furthered our understanding of cation and anion order in amphiboles. The use of bond-valence theory to predict patterns of SRO (Short-Range Order) in amphiboles, and use of these predictions to understand the infrared spectra of well-characterized synthetic-amphibole solid-solutions, has shown that SRO is a major feature of the amphibole structure, and has resulted in major advances in our understanding of SRO in minerals. There has been significant progress relating changes in amphibole composition and cation ordering to petrogenetic conditions and trace-element behavior. Work on the nature of fibrous amphiboles and their toxicity and persistence in living organisms has emphasized the importance of accurate mineralogical characterization in environmental and health-related problems. The current volume has taken a different approach from previous volumes concerned with major groups of rock-forming minerals. Some of the contents have previously been organized by the investigative technique or groups of similar techniques: crystal-structure refinement, spectroscopy, TEM etc. Here, we have taken an approach that focuses on aspects of amphiboles rather than experimental techniques: crystal chemistry, new compositions, long-range order, short-range order etc., and all experimental results germane to these topics are discussed in each chapter. The intent of this approach is to focus on amphiboles, and to emphasize that many techniques are necessary to fully understand each aspect of the amphiboles and their behavior in both natural and industrial processes.
    Type of Medium: Monograph available for loan
    Pages: XV, 545 S. , graph. Darst.
    ISBN: 0-939950-79-0 , 978-0-939950-79-9
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 67
    Classification:
    Geochemistry
    Note: Chapter 1. Amphiboles: Crystal Chemistry by Frank C. Hawthorne and Roberta Oberti, p. 1 - 54 Chapter 2. Classification of the Amphiboles by Frank C. Hawthorne and Roberta Oberti, p. 55 - 88 Chapter 3. New Amphibole Compositions: Natural and Synthetic by Roberta Oberti, Giancarlo Della Ventura, and Fernando Cámara, p. 89 - 124 Chapter 4. Long-Range Order in Amphiboles by Roberta Oberti, Frank C. Hawthorne, Elio Cannillo, and Fernando Cámara, p. 125 - 172 Chapter 5. Short-Range Order in Amphiboles by Frank C. Hawthorne and Giancarlo Della Ventura, p. 173 - 222 Chapter 6. Non-Ambient in situ Studies of Amphiboles by Mark D. Welch, Fernando Camara, Giancarlo Della Ventura, and Gianluca Iezzi, p. 223 - 260 Chapter 7. The Synthesis and Stability of Some End-Member Amphiboles by Bernard W. Evans, p. 261 - 286 Chapter 8. The Significance of the Reaction Path in Synthesizing Single-Phase Amphibole of Defined Composition by Walter V. Maresch and Michael Czank, p. 287 - 322 Chapter 9. Amphiboles in the Igneous Environment by Robert F. Martin, p. 323 - 358 Chapter 10. Metamorphic Amphiboles: Composition and Coexistence by John C. Schumacher, p. 359 - 416 Chapter 11. Trace-Element Partitioning Between Amphibole and Silicate Melt by Massimo Tiepolo, Roberta Oberti, Alberto Zanetti, Riccardo Vannucci, and Stephen F. Foley, p. 417 - 452 Chapter 12. Amphiboles: Environmental and Health Concerns by Mickey E. Gunter, Elena Belluso, and Annibale Mottana, p. 453 - 516 Chapter 13. Amphiboles: Historical Perspective by Curzio Cipriani, p. 517 - 546
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Call number: 11/M 06.0639
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Medical Mineralogy and Geochemistry is an emergent, highly interdisciplinary field of study. The disciplines of mineralogy and geochemistry are integral components of cross-disciplinary investigations that aim to understand the interactions between geomaterials and humans as well as the normal and pathological formation of inorganic solid precipitates in vivo. Research strategies and methods include but are not limited to: stability and solubility studies of earth materials and biomaterials in biofluids or their proxies (i.e., equilibrium thermodynamic studies), kinetic studies of pertinent reactions under conditions relevant to the human body, molecular modeling studies, and geospatial and statistical studies aimed at evaluating environmental factors as causes for activating certain chronic diseases in genetically predisposed individuals or populations. Despite its importance, the area of Medical Mineralogy and Geochemistry has received limited attention by scientists, administrators, and the public. The objectives of this volume are to highlight some of the existing research opportunities and challenges, and to invigorate exchange of ideas between mineralogists and geochemists working on medical problems and medical scientists working on problems involving geomaterials and biominerals. Examples presented in this volume (Table of contents below) include the effects of inhaled dust particles in the lung (Huang et al. 2006; Schoonen et al. 2006), biomineralization of bones and teeth (Glimcher et al. 2006), the formation of kidney-stones, the calcification of arteries, the speciation exposure pathways and pathological effects of heavy metal contaminants (Reeder et al. 2006; Plumlee et al. 2006), the transport and fate of prions and pathological viruses in the environment (Schramm et al. 2006), the possible environmental-genetic link in the occurrence of neurodegenerative diseases (Perl and Moalem 2006), the design of biocompatible, bioactive ceramics for use as orthopaedic and dental implants and related tissue engineering applications (Cerruti and Sahai 2006) and the use of oxide-encapsulated living cells for the development of biosensors (Livage and Coradin 2006).
    Type of Medium: Monograph available for loan
    Pages: xi, 332 S.
    ISBN: 0-939950-76-6 , 978-0939950-76-8
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 64
    Classification:
    Applied Geology
    Note: Chapter 1. The Emergent Field of Medical Mineralogy and Geochemistry by Nita Sahai, Martin A. A. Schoonen, and H. Catherine W. Skinner, p. 1 - 4 Chapter 2. The Toxicological Geochemistry of Earth Materials: An Overview of Processes and the Interdisciplinary Methods Used to Understand Them by Geoffrey S. Plumlee, Suzette A. Morman, and Thomas L. Ziegler, p. 5 - 58 Chapter 3. Metal Speciation and Its Role in Bioaccessibility and Bioavailability by Richard J. Reeder, Martin A. A. Schoonen, and Antonio Lanzirotti, p. 59 - 114 Chapter 4. Aluminum, Alzheimer's Disease and the Geospatial Occurrence of Similar Disorders by Daniel P. Perl and Sharon Moalem, p. 115 - 134 Chapter 5. Potential Role of Soil in the Transmission of Prion Disease by P. T. Schramm, C. J. Johnson, N. E. Mathews, D. McKenzie, J. M. Aiken, and Joel A. Pedersen, p. 135 - 152 Chapter 6. Interaction of Iron and Calcium Minerals in Coals and their Roles in Coal Dust-Induced Health and Environmental Problems by Xi Huang, Terry Gordon, William N. Rom, and Robert B. Finkelman, p. 153 - 178 Chapter 7. Mineral-Induced Formation of Reactive Oxygen Species by Martin A. A. Schoonen, Corey A. Cohn, Elizabeth Roemer, Richard Laffers, Sanford R. Simon, Thomas O'Riordan, p. 179 - 222 Chapter 8. Bone: Nature of the Calcium Phosphate Crystals and Cellular, Structural, and Physical Chemical Mechanisms in Their Formation by Melvin J. Glimcher, p. 223 - 282 Chapter 9. Silicate Biomaterials for Orthopaedic and Dental Implants by Marta Cerruti and Nita Sahai, p. 283 - 314 Chapter 10. Living Cells in Oxide Glasses by Jacques Livage and Thibaud Coradin, p. 315 - 332
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Call number: 11/M 06.0638
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: For over half a century neutron scattering has added valuable information about the structure of materials. Unlike X-rays that have quickly become a standard laboratory technique and are available to all modern researchers in physics, chemistry, materials and earth sciences, neutrons have been elusive and reserved for specialists. A primary reason is that neutron beams, at least so far, are only produced at large dedicated facilities with nuclear reactors and accelerators and access to those has been limited. Yet there are a substantial number of experiments that use neutron scattering. While earth science users are still a small minority, neutron scattering has nevertheless contributed valuable information on geological materials for well over half a century. Important applications have been in crystallography (e.g. atomic positions of hydrogen and Al-Si ordering in feldspars and zeolites, Mn-Fe-Ti distribution in oxides), magnetic structures, mineral physics at non-ambient conditions and investigations of anisotropy and residual strain in structural geology and rock mechanics. Applications range from structure determinations of large single crystals, to powder refinements and short-range order determination in amorphous materials. Zeolites, feldspars, magnetite, carbonates, ice, clathrates are just some of the minerals where knowledge has greatly been augmented by neutron scattering experiments. Yet relatively few researchers in earth sciences are taking advantage of the unique opportunities provided by modern neutron facilities. The goal of this volume, and the associated short course by the Mineralogical Society of America held December 7-9 in Emeryville/Berkeley CA, is to attract new users to this field and introduce them to the wide range of applications. As the following chapters will illustrate, neutron scattering offers unique opportunities to quantify properties of earth materials and processes. Focus of this volume is on scientific applications but issues of instrumental availabilities and methods of data processing are also covered to help scientists from such diverse fields as crystallography, mineral physics, geochemistry, rock mechanics, materials science, biomineralogy become familiar with neutron scattering. A few years ago European mineralogists spearheaded a similar initiative that resulted in a special issue of the European Journal of Mineralogy (Volume 14, 2002). Since then the field has much advanced and a review volume that is widely available is highly desirable. At present there is really no easy access for earth scientists to this field and a more focused treatise can complement Bacon's (1955) book, now in its third edition, which is still a classic. The purpose of this volume is to provide an introduction for those not yet familiar with neutrons by describing basic features of neutrons and their interaction with matter as well illustrating important applications. The volume is divided into 17 Chapters. The first two chapters introduce properties of neutrons and neutron facilities, setting the stage for applications. Some applications rely on single crystals (Chapter 3) but mostly powders (Chapters 4-5) and bulk polycrystals (Chapters 15-16) are analyzed, at ambient conditions as well as low and high temperature and high pressure (Chapters 7-9). Characterization of magnetic structures remains a core application of neutron scattering (Chapter 6). The analysis of neutron data is not trivial and crystallographic methods have been modified to take account of the complexities, such as the Rietveld technique (Chapter 4) and the pair distribution function (Chapter 11). Information is not only obtained about solids but about liquids, melts and aqueous solutions as well (Chapters 11-13). In fact this field, approached with inelastic scattering (Chapter 10) and small angle scattering (Chapter 13) is opening unprecedented opportunities for earth sciences. Small angle scattering also contributes information about microstructures (Chapter 14). Neutron diffraction has become a favorite method to quantify residual stresses in deformed materials (Chapter 16) as well as preferred orientation patterns (Chapter 15). The volume concludes with a short introduction into neutron tomography and radiography that may well emerge as a principal application of neutron scattering in the future (Chapter 17).
    Type of Medium: Monograph available for loan
    Pages: xx, 471 S.
    ISBN: 0-939950-75-8 , 978-0939950-75-1
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 63
    Note: Chapter 1. Introduction to Neutron Properties and Applications by John B. Parise, p. 1 - 26 Chapter 2. Neutron Production, Neutron Facilities and Neutron Instrumentation by Sven C. Vogel and Hans-Georg Priesmeyer, p. 27 - 58 Chapter 3. Single-Crystal Neutron Diffraction: Present and Future Applications by Nancy L. Ross and Christina Hoffman, p. 59 - 80 Chapter 4. Neutron Rietveld Refinement by Robert B. Von Dreele, p. 81 - 98 Chapter 5. Application of Neutron Powder-Diffraction to Mineral Structures by Karsten Knorr and Wulf Depmeier, p. 99 - 112 Chapter 6. Neutron Diffraction of Magnetic Materials by Richard J. Harrison, p. 113 - 144 Chapter 7. Neutron Powder Diffraction Studies of Order-Disorder Phase Transitions and Kinetics by Simon A.T. Redfern, p. 145 - 170 Chapter 8. Time-Resolved Neutron Diffraction Studies with Emphasis on Water Ices and Gas Hydrates by Werner F. Kuhs and Thomas C. Hansen, p. 171 - 204 Chapter 9. High Pressure Studies by John B. Parise, p. 205 - 232 Chapter 10. Inelastic Scattering and Applications by Chun-Keung Loong, p. 233 - 254 Chapter 11. Analysis of Disordered Materials Using Total Scattering and the Atomic Pair Distribution Function by Thomas Proffen, p. 255 - 274 Chapter 12. Structure of Glasses and Melts by Martin C. Wilding and Chris J. Benmore, p. 275 - 312 Chapter 13. Neutron Scattering and Diffraction Studies of Fluids and Fluid-Solid Interactions by David R. Cole, Kenneth W. Herwig, Eugene Mamontov and John Z. Larese, p. 313 - 362 Chapter 14. Small-Angle Neutron Scattering and the Microstructure of Rocks by Andrzej P. Radlinski, p. 363 - 398 Chapter 15. Neutron Diffraction Texture Analysis by Hans-Rudolf Wenk, p. 399 - 426 Chapter 16. Internal Stresses in Deformed Crystalline Aggregates by Mark R. Daymond, p. 427 - 458 Chapter 17. Applications of Neutron Radiography and Neutron Tomography by Bjoern Winkler, p. 459 - 471
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Call number: 11/M 06.0515
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Earth is a water planet. Oceans of liquid water dominate the surface processes of the planet. On the surface, water controls weathering as well as transport and deposition of sediments. Liquid water is necessary for life. In the interior, water fluxes melting and controls the solid-state viscosity of the convecting mantle and so controls volcanism and tectonics. Oceans cover more than 70% of the surface but make up only about 0.025% of the planet's mass. Hydrogen is the most abundant element in the cosmos, but in the bulk Earth, it is one of the most poorly constrained chemical compositional variables. Almost all of the nominally anhydrous minerals that compose the Earth's crust and mantle can incorporate measurable amounts of hydrogen. Because these are minerals that contain oxygen as the principal anion, the major incorporation mechanism is as hydroxyl, OH-, and the chemical component is equivalent to water, H2O. Although the hydrogen proton can be considered a monovalent cation, it does not occupy same structural position as a typical cation in a mineral structure, but rather forms a hydrogen bond with the oxygens on the edge of the coordination polyhedron. The amount incorporated is thus quite sensitive to pressure and the amount of H that can be incorporated in these phases generally increases with pressure and sometimes with temperature. Hydrogen solubility in nominally anhydrous minerals is thus much more sensitive to temperature and pressure than that of other elements. Because the mass of rock in the mantle is so large relative to ocean mass, the amount that is incorporated the nominally anhydrous phases of the interior may constitute the largest reservoir of water in the planet. Understanding the behavior and chemistry of hydrogen in minerals at the atomic scale is thus central to understanding the geology of the planet. There have been significant recent advances in the detection, measurement, and location of H in the nominally anhydrous silicate and oxide minerals that compose the planet. There have also been advances in experimental methods for measurement of H diffusion and the effects of H on the phase boundaries and physical properties whereby the presence of H in the interior may be inferred from seismic or other geophysical studies. It is the objective of this volume to consolidate these advances with reviews of recent research in the geochemistry and mineral physics of hydrogen in the principal mineral phases of the Earth's crust and mantle. The Chapters We begin with a review of analytical methods for measuring and calibrating water contents in nominally anhydrous minerals by George Rossman. While infrared spectroscopy is still the most sensitive and most convenient method for detecting water in minerals, it is not intrinsically quantitative but requires calibration by some other, independent analytical method, such as nuclear reaction analysis, hydrogen manometry, or SIMS. A particular advantage of infrared spectroscopy, however, is the fact that it does not only probe the concentration, but also the structure of hydrous species in a mineral and in many cases the precise location of a proton in a mineral structure can be worked out based on infrared spectra alone. The methods and principles behind this are reviewed by Eugen Libowitzky and Anton Beran, with many illustrative examples. Compared to infrared spectroscopy, NMR is much less used in studying hydrogen in minerals, mostly due to its lower sensitivity, the requirement of samples free of paramagnetic ions such as Fe2+ and because of the more complicated instrumentation required for NMR measurements. However, NMR could be very useful under some circumstances. It could detect any hydrogen species in a sample, including such species as H2 that would be invisible with infrared. Potential applications of NMR to the study of hydrogen in minerals are reviewed by Simon Kohn. While structural models of "water" in minerals have already been deduced from infrared spectra several decades ago, in recent years atomistic modeling has become a powerful tool for predicting potential sites for hydrogen in minerals. The review by Kate Wright gives an overview over both quantum mechanical methods and classical methods based on interatomic potentials. Joseph Smyth then summarizes the crystal chemistry of hydrogen in high-pressure silicate and oxide minerals. As a general rule, the incorporation of hydrogen is not controlled by the size of potential sites in the crystal lattice; rather, the protons will preferentially attach to oxygen atoms that are electrostatically underbonded, such as the non-silicate oxygen atoms in some high-pressure phases. Moreover, heterovalent substitutions, e.g., the substitution of Al3+ for Si4+, can have a major effect on the incorporation of hydrogen. Data on water in natural minerals from crust and mantle are compiled and discussed in three reviews by Elisabeth Johnson, Henrik Skogby and by Anton Beran and Eugen Libowitzky. Among the major mantle minerals, clinopyroxenes usually retain the highest water contents, followed by orthopyroxenes and olivine, while the water contents in garnets are generally low. Most of these water contents need to be considered as minimum values, as many of the mantle xenoliths may have lost water during ascent. However, there are some cases where the correlation between the water contents and other geochemical parameters suggest that the measured water concentrations reflect the true original water content in the mantle. The basic thermodynamics as well as experimental data on water solubility and partitioning are reviewed by Hans Keppler and Nathalie Bolfan Casanova. Water solubility in minerals depends in a complicated way on pressure, temperature, water fugacity and bulk composition. For example, water solubility in the same mineral can increase or decrease with temperature, depending on the pressure of the experiments. Nevertheless, the pressure and temperature dependence of water solubility can be described by a rather simple thermodynamic formalism and for most minerals of the upper mantle, the relevant thermodynamic parameters are known. The highest water solubilities are reached in the minerals wadsleyite and ringwoodite stable in the transition zone, while the minerals of the lower mantle are probably mostly dry. The rather limited experimental data on water partitioning between silicate melts and minerals are reviewed by Simon Kohn and Kevin Grant. One important observation here is that comparing the compatibility of hydrogen with that of some rare earth element is misleading, as such correlations are always limited to a small range of pressure and temperature for a given mineral. The stabilities of hydrous phases in the peridotite mantle and in subducted slabs are reviewed by Daniel Frost and by Tatsuhiko Kawamoto. While most of the water in the mantle is certainly stored in the nominally anhydrous minerals, hydrous phases can be important storage sites of water in certain environments. Amphibole and phlogopite require a significant metasomatic enrichment of Na and K in order to be stabilized in the upper mantle, but serpentine may be an important carrier of water in cold subducted slabs. The diffusion of hydrogen in minerals is reviewed by Jannick Ingrin and Marc Blanchard. An important general observation here is that natural minerals usually do not loose hydrogen as water, but as H2 generated by redox reaction of OH with Fe2+. Moreover, diffusion coefficients of different mantle minerals can vary by orders of magnitude, often with significant anisotropy. While some minerals in a mantle xenolith may therefore have lost virtually all of their water during ascent, other minerals may still preserve the original water content and in general, the apparent partition coefficients of water between the minerals of the same xenolith can be totally out of equilibrium. Accordingly, it would be highly desirable to directly deduce the water content in the mantle from geophysical data. One strategy, based on seismic velocities and therefore ultimately on the effect of water on the equation of state of minerals, is outlined by Steve Jacobsen. The dissolution of water in minerals usually increases the number of cation vacancies, yielding reduced bulk and shear moduli and seismic velocities. Particularly, the effect on shear velocities is strong and probably larger than the effect expected from local temperature variations. Accordingly, the vs/vp ratio could be a sensitive indicator of mantle hydration. A more general approach towards remote sensing of hydrogen in the Earth's mantle, including effects of seismic anisotropy due to lattice preferred orientation and the use of electrical conductivity data is presented by Shun-ichiro Karato. Probably the most important effect of water on geodynamics is related to the fact that even traces of water dramatically reduce the mechanical strength of rocks during deformation. The physics behind this effect is discussed by David Kohlstedt. Interestingly, it appears that the main mechanism behind "hydrolytic weakening" is related to the effect of water on the concentration and mobility of Si vacancies, rather than to the protons themselves. Water may have major effects on the location of mantle discontinuities, as reviewed by Eiji Ohtani and Konstantin Litasov. Most of these effects can be rationalized as being due to the expansion of the stability fields of those phases (e.g., wadsleyite) that preferentially incorporate water. Together with other geophysical data, the changes in the depths of discontinuities are a promising tool for the remote sensing of water contents in the mantle. The global effects of water on the evolution of our planet are reviewed in the last two chapters by Bernard Marty, Reika Yokochi and Klaus Regenauer-Lieb. By combining hydrogen und nitrogen isotope data, Marty and Yokochi demonstrate convincingly that most of the Earth's water very likely originated from a chondritic source. Water may have had a profound effect on the early evolution of our planet, since a water-rich dense atmosphere could have favored melting by a thermal blanketing effect. However, Marty and Yokochi also show very clearly that it is pretty much impossible to derive reliable estimates of the Earth's present-day water content from cosmochemical arguments, since many factors affecting the loss of water during and after accretion are poorly constrained or not constrained at all. In the last chapter, Klaus Regenauer-Lieb investigates the effect of water on the style of global tectonics. He demonstrates that plate tectonics as we know it is only possible if the water content of the mantle is above a threshold value. The different tectonic style observed on Mars and Venus may therefore be directly related to differences in mantle water content. Earth is the water planet — not just because of it's oceans, but also because of its tectonic evolution.
    Type of Medium: Monograph available for loan
    Pages: xix, 478 S.
    ISBN: 0-939950-74-X , 978-0-939950-74-4
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 62
    Classification:
    Hydrology
    Note: Chapter 1. Analytical Methods for Measuring Water in Nominally Anhydrous Minerals by George R. Rossman, p. 1 - 28 Chapter 2. The Structure of Hydrous Species in Nominally Anhydrous Minerals: Information from Polarized IR Spectroscopy by Eugen Libowitzky and Anton Beran, p. 29 - 52 Chapter 3. Structural Studies of OH in Nominally Anhydrous Minerals Using NMR by Simon C. Kohn, p. 53 - 66 Chapter 4. Atomistic Models of OH Defects in Nominally Anhydrous Minerals by Kate Wright, p. 67 - 84 Chapter 5. Hydrogen in High Pressure Silicate and Oxide Mineral Structures by Joseph R. Smyth, p. 85 - 116 Chapter 6. Water in Nominally Anhydrous Crustal Minerals: Speciation, Concentration, and Geologic Significance by Elizabeth A. Johnson, p. 117 - 154 Chapter 7. Water in Natural Mantle Minerals I: Pyroxenes by Henrik Skogby, p. 155 - 168 Chapter 8. Water in Natural Mantle Minerals II: Olivine, Garnet and Accessory Minerals by Anton Beran and Eugen Libowitzky, p. 169 - 192 Chapter 9. Thermodynamics of Water Solubility and Partitioning by Hans Keppler and Nathalie Bolfan-Casanova, p. 193 - 230 Chapter 10. The Partitioning of Water Between Nominally Anhydrous Minerals and Silicate Melts by Simon C. Kohn and Kevin J. Grant, p. 231 - 242 Chapter 11. The Stability of Hydrous Mantle Phases by Daniel J. Frost, p. 243 - 272 Chapter 12. Hydrous Phases and Water Transport in the Subducting Slab by Tatsuhiko Kawamoto, p. 273 - 290 Chapter 13. Diffusion of Hydrogen in Minerals by Jannick Ingrin and Marc Blanchard, p. 291 - 320 Chapter 14. Effect of Water on the Equation of State of Nominally Anhydrous Minerals by Steven D. Jacobsen, p. 321 - 342 Chapter 15. Remote Sensing of Hydrogen in Earth's Mantle by Shun-ichiro Karato, p. 343 - 376 Chapter 16. The Role of Water in High-Temperature Rock Deformation by David L. Kohlstedt, p. 377 - 396 Chapter 17. The Effect of Water on Mantle Phase Transitions by Eiji Ohtani and K. D. Litasov, p. 397 - 420 Chapter 18. Water in the Early Earth by Bernard Marty and Reika Yokochi, p. 421 - 450 Chapter 19. Water and Geodynamics by Klaus Regenauer-Lieb, p. 451 - 474
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Series available for loan
    Series available for loan
    Chantilly, Va. : Mineralogical Society of America
    Call number: 11/M 06.0436
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The very successful orbital missions of the 1990's, Clementine and Lunar Prospector, provided key mineralogical, geochemical, and geophysical data sets that extended our view of the Moon beyond what we knew from Apollo and Luna exploration to a truly global perspective. These new data sets have been integrated with information gained from three preceding decades of study of lunar samples and older, less complete remotely sensed data sets. Although there have been no new lunar sample-return missions since Apollo and Luna, new samples are available in the form of meteorites, recognized to be pieces of the Moon. These, too, play a role in improved knowledge of the Moon and in helping to couple information obtained by remote sensing with information obtained from rock and soil samples. As we stand on the edge of a new era of lunar and planetary exploration, including new missions to the Moon, Mars, and other planets and moons, we find it essential to examine in depth how the wide variety of data sets obtained during the course of lunar exploration can be used together to better understand the formation of the Moon and how it evolved to its present state. Such an understanding holds important lessons for the new era of lunar exploration as well as the exploration of other planets in the Solar System. This will ultimately lead to better knowledge of how our own planet Earth - with its unique environment suitable for the origin and evolution of life - originated and changed with time. This book assesses the current state of knowledge of lunar geoscience, given the data sets provided by missions of the 1990's, and lists remaining key questions as well as new ones for future exploration to address. It documents how a planet or moon other than the world on which we live can be studied and understood in light of integrated suites of specific kinds of information. The Moon is the only body other than Earth for which we have material samples of known geologic context for study. This book seeks to show how the different kinds of information gained about the Moon relate to each other and also to learn from this experience, thus allowing more efficient planning for the exploration of other worlds.
    Type of Medium: Series available for loan
    Pages: XXII, 721 S. , Ill., graph. Darst., Kt.
    ISBN: 0-939950-72-3 , 978-0-939950-72-0
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 60
    Note: Chapter 1. New Views of Lunar Geoscience: An Introduction and Overview by Harald Hiesinger and James W. Head III, p. 1 - 81 Chapter 2. Understanding the Lunar Surface and Space-Moon Interactions by Paul Lucey, Randy L. Korotev, Jeffrey J. Gillis, Larry A. Taylor, David Lawrence, Bruce A. Campbell, Rick Elphic, Bill Feldman, Lon L. Hood, Donald Hunten, Michael Mendillo, Sarah Noble, James J. Papike, Robert C. Reedy, Stefanie Lawson, Tom Prettyman, Olivier Gasnault, and Sylvestre Maurice, p. 83 - 220 Chapter 3. The Constitution and Structure of the Lunar Interior by Mark A. Wieczorek, Bradley L. Jolliff, Amir Khan, Matthew E. Pritchard, Benjamin P. Weiss, James G. Williams, Lon L. Hood, Kevin Righter, Clive R. Neal, Charles K. Shearer, I. Stewart McCallum, Stephanie Tompkins, B. Ray Hawke, Chris Peterson, Jeffrey J. Gillis, and Ben Bussey, p. 221 - 364 Chapter 4. Thermal and Magmatic Evolution of the Moon by Charles K. Shearer, Paul C. Hess, Mark A. Wieczorek, Matt E. Pritchard, E. Mark Parmentier, Lars E. Borg, John Longhi, Linda T. Elkins-Tanton, Clive R. Neal, Irene Antonenko, Robin M. Canup, Alex N. Halliday, Tim L. Grove, Bradford H. Hager, D-C. Lee, and Uwe Wiechert, p. 365 - 518 Chapter 5. Cratering History and Lunar Chronology by Dieter Stˆffler, Graham Ryder, Boris A. Ivanov, Natalia A. Artemieva, Mark J. Cintala, and Richard A. F. Grieve, p. 519 - 596 Chapter 6. Development of the Moon by Michael B. Duke, Lisa R. Gaddis, G. Jeffrey Taylor, and Harrison H. Schmitt, p. 597 - 656 Chapter 7. Earth-Moon System, Planetary Science, and Lessons Learned by Michael B. Duke, Lisa R. Gaddis, G. Jeffrey Taylor, and Harrison H. Schmitt, p. 657 - 704
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Call number: 11/M 05.0413
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: In Materials Science, investigations aiming to prepare new types of molecular sieves (porous materials) have opened a productive field of research inspired by the crystal structures of minerals. These new molecular sieves are distinct from zeolites in that they have different kinds of polyhedra that build up their structures. Of particular interest are the new molecular sieves characterized by a mixed "octahedral"-tetrahedral framework (heteropolyhedral frameworks), instead of a purely tetrahedral framework as in zeolites. Heteropolyhedral compounds have been extensively studied since the early 1990's, with particular attention having been focused on titanosilicates, such as ETS-4 (synthetic analog of the mineral zorite) and ETS-10. However, titanosilicates are not the only representatives of novel microporous mineral phases. The search for "octahedral"-tetrahedral silicates was extended to metals other than titanium, for instance, the zirconosilicates with the preparation of synthetic counterparts of the minerals gaidonnayite, petarasite and umbite. Many microporous heteropolyhedral compounds containing metals such as Nb, V, Sn, Ca and lanthanides, have been reported and a wide number of distinct structural types (e.g., rhodesite-delhayelite and tobermorite) have been synthesized and structurally characterized. Moreover, the potential applications of these novel materials have been evaluated, particularly in the areas of catalysis, separation of molecular species, ion exchange and optical and magnetic properties. A comprehensive review of the mineralogical, structural, chemical and crystal-chemical studies carried on natural phases may be extremely useful to inspire and favor investigations on analogs or related synthetic materials. A similar synergy between mineralogists and materials scientists already occurred in the "classical" case of zeolites, in which the wide and deep structural and crystal-chemical knowledge accumulated in the study of the natural phases was extraordinarily useful to the chemists who are active in the field of molecular sieves. In particular, the structural investigation of the natural phases may be extremely rewarding and helpful in orienting the work of synthesis and in understanding the nature of the synthetic products, for the following reasons: Whereas rarely the crystalline synthetic products are suitable for single-crystal structural investigations, the natural counterparts are often well crystallized. Crystallization in nature occurs from chemical systems characterized by a wide compositional range, thus producing compounds with a very rich and variable crystal chemistry, which may provide precious information, suggesting possible substituting elements and addressing the synthetic work in a very productive way. The present volume follows a meeting on "Micro- and mesoporous mineral phases" (Rome, December 6-7, 2004) that was jointly organized by the Accademia Nazionale dei Lincei (ANL) and the International Union of Crystallography (IUCr) via its Commission on Inorganic and Mineral Structures (CIMS). The meeting was convened by Fausto Calderazzo, Giovanni Ferraris, Stefano Merlino and Annibale Mottana and financially supported by several other organizations representing both Mineralogy (e.g., the International Mineralogical Association and the European Mineralogical Union) and Crystallography (e.g., the European Crystallographic Association and the Italian Association of Crystallography). To participants, ANL staff, organizations, and, in general, all involved persons, our sincere acknowledgments; in particular, we are grateful to Annibale Mottana who was able to convince the ANL Academicians to schedule and support the meeting. This volume of the RiMG series highlights the present knowledge on micro- and mesoporous mineral phases, with focus on their crystal-chemical aspects, occurrence and porous activity in nature and experiments. As zeolites are the matter of numerous ad hoc meetings and books - including two volumes in this series - they do not specifically appear in the present volume. The phases of the sodalite and cancrinite-davyne groups, which mineralogists consider distinct from zeolites, are instead considered (in the order, chapter 7 by W. Depmeier and part of chapter 8 by E. Bonaccorsi and S. Merlino, respectively). The first two chapters of the volume cover general aspects of porous materials. This includes the application of the IUPAC nomenclature developed for ordered porous materials to non-zeolite mineral phases (L.B. McCusker, chapter 1) and the extension to heteropolyhedral structures of a topological description by using nodes representing the coordination polyhedra (S.V. Krivovichev, chapter 2). Chapters from 3 to 7 are dedicated to various groups of heteropolyhedral porous structures for which the authors emphasize some of the more general aspects according to their research specialization. G. Ferraris and A. Gula (chapter 3) put the emphasis on the modular aspects of well-known porous phases (such as sepiolite, palygorskite and rhodesite-related structures) as well as on heterophyllosilicates that may be not strictly porous phases (according to the definition given in chapter 1) but could be the starting basis for pillared materials. The porous mineral phases typical of hyperalkaline rocks (such as eudialytes and labuntsovites) are discussed by N.V. Chukanov and I.V. Pekov under their crystal-chemical (chapter 4) and minerogenetic (chapter 5) aspects showing the role of ion exchange during the geological evolution from primary to later phases, with experimental cation exchange data also being reported. J. Rocha and Z. Lin (chapter 6) emphasize how research on the synthesis of octahedral-pentahedral-tetrahedral framework silicates has been inspired and motivated by the many examples of such materials provided by nature; synthesis, structure and possible technological applications of a wide number of these materials are also described. Following chapters 7 and 8 - which besides the cancrinite-davyne group, presents the crystallographic features of the minerals in the tobermorite and gyrolite groups - M. Pasero (chapter 9) illustrates the topological and polysomatic aspects of the "tunnel oxides," a historical name applied to porous oxides related to MnO2, and reviews their main technological applications. The next two chapters (10 and 11) draw attention to "unexpected" porous materials like apatite and sulfides. T.J. White and his team (chapter 10) convincingly show that the apatite structure type displays porous properties, some of which are already exploited. Chapter 10 also contains two appendices that report crystal and synthesis data for hundreds of synthetic apatites, a number that demonstrates how wide the interest is for this class of compounds. E. Makovicky (chapter 11) analyzes the structures of natural and synthetic sulfides and selenides showing that, even if experimental work proving porous activity is practically still missing, several structure types display promising channels. Chapter 12, by M. Mellini, is the only one dedicated to mesoporous mineral phases - which are crystalline compounds with pores wider than 2 nm. Examples discussed are carbon nanotubes, fullerenes - which occur also in nature - chrysotile, opal and, moving from channels to cages, clathrates.
    Type of Medium: Monograph available for loan
    Pages: XIII, 448 S. , zahlr. Ill. und graph. Darst.
    ISBN: 0-939950-69-3 , 978-0-939950-69-0
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 57
    Classification:
    Mineralogy
    Note: Chapter 1. IUPAC Nomenclature for Ordered Microporous and Mesoporous Materials and its Application to Non-zeolite Microporous Mineral Phases by Lynne B. McCusker, p. 1 - 16 Chapter 2. Topology of Microporous Structures by Sergey Krivovichev, p. 17 - 68 Chapter 3. Polysomatic Aspects of Microporous Minerals - Heterophyllosilicates, Palysepioles and Rhodesite-Related Structures by Giovanni Ferraris and Angela Gula, p. 69 - 104 Chapter 4. Heterosilicates with Tetrahedral-Octahedral Frameworks: Mineralogical and Crystal-Chemical Aspects by Nikita V. Chukanov and Igor V. Pekov, p. 105 - 144 Chapter 5. Microporous Framework Silicate Minerals with Rare and Transition Elements: Minerogenetic Aspects by Igor V. Pekov and Nikita V. Chukanov, p. 145 - 172 Chapter 6. Microporous Mixed Octahedral-Pentahedral-Tetrahedral Framework Silicates by Joao Rocha & Zhi Lin, p. 173 - 202 Chapter 7. The Sodalite Family - A Simple but Versatile Framework Structure by Wulf Depmeier, p. 203 - 240 Chapter 8. Modular Microporous Minerals: Cancrinite-Davyne Group and C-S-H Phases by Elena Bonaccorsi and Stefano Merlinov, p. 241 - 290 Chapter 9. A Short Outline of the Tunnel Oxides by Marco Pasero, p. 291 - 306 Chapter 10. Apatite - An Adaptive Framework Structure by Tim White, Cristiano Ferraris, Jean Kim, and Srinivasan Madhavi, p. 307 - 402 Chapter 11. Micro- and Mesoporous Sulfide and Selenide Structures by Emil Makovicky, p. 403 - 434 Chapter 12. Micro- and Mesoporous Carbon Forms, Chrysotile, and Clathrates by Marcello Mellini, p. 435 - 448
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...